# ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ # This file was automatically generated from . # Do NOT edit this file manually as any edits will be overwritten by the generation of # the file from the diff. If any change should be done, please apply the change to the # diff.py file directly. # ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ # coding=utf-8 # Copyright 2024 Google Inc. HuggingFace Inc. team. All rights reserved. # # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from dataclasses import dataclass import math from typing import List, Optional, Tuple, Union import inspect import torch import torch.nn.functional as F import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from transformers.activations import ACT2FN from transformers.cache_utils import Cache, DynamicCache, StaticCache from transformers.modeling_attn_mask_utils import AttentionMaskConverter from transformers.modeling_outputs import ( BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast, TokenClassifierOutput, ) from transformers.modeling_utils import PreTrainedModel from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS from transformers.utils import ( add_start_docstrings, add_start_docstrings_to_model_forward, is_flash_attn_2_available, is_flash_attn_greater_or_equal_2_10, logging, replace_return_docstrings, ModelOutput, ) from .gemma_config import CostWiseGemmaConfig from transformers.models.gemma2.modeling_gemma2 import Gemma2RMSNorm, Gemma2RotaryEmbedding, rotate_half, apply_rotary_pos_emb from transformers.models.gemma2.modeling_gemma2 import Gemma2MLP, repeat_kv, Gemma2Attention, Gemma2FlashAttention2, Gemma2SdpaAttention, GEMMA2_ATTENTION_CLASSES, Gemma2DecoderLayer, GEMMA2_START_DOCSTRING from transformers.models.gemma2.modeling_gemma2 import GEMMA2_INPUTS_DOCSTRING if is_flash_attn_2_available(): from flash_attn import flash_attn_func, flash_attn_varlen_func from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa _flash_supports_window_size = "window_size" in list(inspect.signature(flash_attn_func).parameters) logger = logging.get_logger(__name__) def _get_unpad_data(attention_mask): seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() max_seqlen_in_batch = seqlens_in_batch.max().item() cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0)) return ( indices, cu_seqlens, max_seqlen_in_batch, ) @add_start_docstrings( "The bare Gemma2 Model outputting raw hidden-states without any specific head on top.", GEMMA2_START_DOCSTRING, ) class CostWiseGemma2PreTrainedModel(PreTrainedModel): config_class = CostWiseGemmaConfig base_model_prefix = "model" supports_gradient_checkpointing = True _no_split_modules = ["Gemma2DecoderLayer"] _skip_keys_device_placement = ["past_key_values"] _supports_flash_attn_2 = True _supports_sdpa = True _supports_cache_class = False _supports_quantized_cache = False _supports_static_cache = True _is_stateful = True def _init_weights(self, module): std = self.config.initializer_range if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() GEMMA2_ATTENTION_CLASSES = { "eager": Gemma2Attention, "flash_attention_2": Gemma2FlashAttention2, "sdpa": Gemma2SdpaAttention, } _CONFIG_FOR_DOC = "CostWiseGemmaConfig" @dataclass class CostWiseModelOutputWithPast(ModelOutput): last_hidden_state: torch.FloatTensor = None past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None attention_masks: Optional[Tuple[torch.FloatTensor]] = None @dataclass class CostWiseCausalLMOutputWithPast(ModelOutput): loss: Optional[torch.FloatTensor] = None logits: torch.FloatTensor = None past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None attention_masks: Optional[Tuple[torch.FloatTensor]] = None def token_compress(compress_ratio, hidden_states, attention_mask, query_lengths, prompt_lengths): """ compress_ratio: int hidden_states: (b, s, h) attention_mask: (b, s) query_lengths: (b) prompt_lengths: (b) """ # get some specific parameters passage_lengths = torch.sum(attention_mask, dim=1, dtype=torch.int) - query_lengths - prompt_lengths # the raw passage lengths (b) retain_passage_lengths = (passage_lengths + compress_ratio - 1) // compress_ratio # the passage lengths need to be retained (b) final_useful_lengths = query_lengths + prompt_lengths + retain_passage_lengths # the final useful length after compress (b) max_passage_length = torch.max(passage_lengths) # the max passage lengths (1) max_final_lengths = torch.max(final_useful_lengths) # the max useful lengths after compress (1) # make new hidden states and new attention masks new_hidden_states = torch.zeros((hidden_states.shape[0], max_final_lengths, hidden_states.shape[-1]), dtype=hidden_states.dtype).to(hidden_states.device) # (b, s', h) new_attention_mask = torch.ones((hidden_states.shape[0], max_final_lengths), dtype=attention_mask.dtype).to(attention_mask.device) # (b, s') # get new attention mask mask_attention_index = torch.arange(max_final_lengths, device=hidden_states.device).unsqueeze(0) >= final_useful_lengths[:, None] new_attention_mask[mask_attention_index] = 0 # get new hidden states # add query into new hidden states query_index = torch.arange(max_final_lengths, device=hidden_states.device).unsqueeze(0) mask_query_index = query_index < query_lengths[:, None] new_hidden_states[mask_query_index] = hidden_states[:, : max_final_lengths, :][mask_query_index] # add prompt into new hidden states # get the index of the prompt in new hidden states new_prompt_start_length = query_lengths + retain_passage_lengths new_prompt_end_length = new_prompt_start_length + prompt_lengths new_prompt_index = torch.arange(max_final_lengths, device=hidden_states.device).unsqueeze(0) new_mask_prompt_index_start = new_prompt_index >= new_prompt_start_length[:, None] new_mask_prompt_index_end = new_prompt_index < new_prompt_end_length[:, None] new_mask_prompt_index = new_mask_prompt_index_start & new_mask_prompt_index_end # get the index of the prompt in hidden states raw_prompt_start_length = query_lengths + passage_lengths raw_prompt_end_length = raw_prompt_start_length + prompt_lengths raw_prompt_index = torch.arange(hidden_states.shape[1], device=hidden_states.device).unsqueeze(0) raw_mask_prompt_index_start = raw_prompt_index >= raw_prompt_start_length[:, None] raw_mask_prompt_index_end = raw_prompt_index < raw_prompt_end_length[:, None] raw_mask_prompt_index = raw_mask_prompt_index_start & raw_mask_prompt_index_end # replace the prompt hidden states new_hidden_states[new_mask_prompt_index] = hidden_states[raw_mask_prompt_index] # ไปฅไธŠๅ‡ๆฒก้—ฎ้ข˜ # print(new_hidden_states.view(len(new_hidden_states), -1)) # print(new_attention_mask) # get the index of the passage in new hidden states new_passage_start_length = query_lengths new_passage_end_length = new_passage_start_length + retain_passage_lengths new_passage_index = torch.arange(max_final_lengths, device=hidden_states.device).unsqueeze(0) new_mask_passage_index_start = new_passage_index >= new_passage_start_length[:, None] new_mask_passage_index_end = new_passage_index < new_passage_end_length[:, None] new_mask_passage_index = new_mask_passage_index_start & new_mask_passage_index_end # print(query_lengths, prompt_lengths, retain_passage_lengths, final_useful_lengths) # add passage into new hidden states # get mask hidden states psg_start_length = query_lengths psg_end_length = query_lengths + passage_lengths psg_index = torch.arange(hidden_states.shape[1], device=hidden_states.device).unsqueeze(0) mask_psg_index_start = psg_index >= psg_start_length[:, None] mask_psg_index_end = psg_index < psg_end_length[:, None] mask_psg_index = mask_psg_index_start & mask_psg_index_end hidden_states = hidden_states * mask_psg_index.unsqueeze(-1) passage_hidden_states = torch.zeros((hidden_states.shape[0], (max_passage_length + compress_ratio - 1) // compress_ratio * compress_ratio, hidden_states.shape[-1]), dtype=hidden_states.dtype).to(hidden_states.device) passage_end_length = passage_lengths passage_index = torch.arange(passage_hidden_states.shape[1], device=hidden_states.device).unsqueeze(0) # maybe exceed the max passage length mask_passage_index = passage_index < passage_end_length[:, None] raw_passage_end_length = query_lengths + passage_lengths raw_passage_start_length = query_lengths raw_passage_index = torch.arange(hidden_states.shape[1], device=hidden_states.device).unsqueeze(0) raw_mask_passage_index_start = raw_passage_index >= raw_passage_start_length[:, None] raw_mask_passage_index_end = raw_passage_index < raw_passage_end_length[:, None] raw_mask_passage_index = raw_mask_passage_index_start & raw_mask_passage_index_end passage_hidden_states[mask_passage_index] = hidden_states[raw_mask_passage_index] passage_weights = torch.zeros((hidden_states.shape[0], (max_passage_length + compress_ratio - 1) // compress_ratio * compress_ratio) , dtype=hidden_states.dtype).to(hidden_states.device) passage_weights[mask_passage_index] = 1 passage_weights = passage_weights.view(passage_weights.shape[0], -1, compress_ratio) passage_weights = passage_weights / torch.sum(passage_weights, dim=-1 ).view(passage_weights.shape[0], -1, 1) passage_weights = passage_weights.view(passage_weights.shape[0], -1) # passage_weights = torch.where(passage_weights == torch.nan, 0, passage_weights) passage_hidden_states = passage_hidden_states * passage_weights.unsqueeze(-1) passage_hidden_states = passage_hidden_states.view(passage_hidden_states.shape[0], -1, compress_ratio, passage_hidden_states.shape[-1]) passage_hidden_states = torch.sum(passage_hidden_states, dim=2) passage_end_length = retain_passage_lengths passage_index = torch.arange(passage_hidden_states.shape[1], device=hidden_states.device).unsqueeze(0) mask_passage_index = passage_index < passage_end_length[:, None] new_hidden_states[new_mask_passage_index] = passage_hidden_states[mask_passage_index] return new_hidden_states, new_attention_mask @add_start_docstrings( "The bare Gemma2 Model outputting raw hidden-states without any specific head on top.", GEMMA2_START_DOCSTRING, ) class CostWiseGemmaModel(CostWiseGemma2PreTrainedModel): """ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`GemmaDecoderLayer`] Args: config: GemmaConfig """ def __init__(self, config: CostWiseGemmaConfig): super().__init__(config) self.padding_idx = config.pad_token_id self.vocab_size = config.vocab_size self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) self.layers = nn.ModuleList( [Gemma2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] ) self.norm = Gemma2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embed_tokens def set_input_embeddings(self, value): self.embed_tokens = value @add_start_docstrings_to_model_forward(GEMMA2_INPUTS_DOCSTRING) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, compress_layer: Optional[int] = None, compress_ratio: Optional[int] = None, cutoff_layers: Optional[List[int]] = None, query_lengths: Optional[int] = None, prompt_lengths: Optional[int] = None, ) -> Union[Tuple, CostWiseModelOutputWithPast]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions compress_ratio = None if compress_ratio == 1 else compress_ratio output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) if self.config.layer_wise: output_hidden_states = True use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict if (input_ids is None) ^ (inputs_embeds is not None): raise ValueError( "You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one" ) if self.gradient_checkpointing and self.training and use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`." ) use_cache = False if compress_layer is not None and compress_ratio is not None: logger.warning_once( "`use_cache=True` is incompatible with reranker. Setting `use_cache=False`." ) use_cache = False if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) if cache_position is None: cache_position = torch.arange(0, inputs_embeds.shape[1], device=inputs_embeds.device) if position_ids is None: position_ids = cache_position.unsqueeze(0) causal_mask = self._update_causal_mask( attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions ) # embed positions hidden_states = inputs_embeds # normalized # Gemma downcasts the below to float16, causing sqrt(3072)=55.4256 to become 55.5 # See https://github.com/huggingface/transformers/pull/29402 normalizer = torch.tensor(self.config.hidden_size**0.5, dtype=hidden_states.dtype) hidden_states = hidden_states * normalizer # decoder layers all_hidden_states = () if output_hidden_states else None all_attention_masks = () all_self_attns = () if output_attentions else None next_decoder_cache = None is_padding_left = (attention_mask[:, -1].sum() == attention_mask.shape[0]) and ( torch.sum(attention_mask) != attention_mask.shape[0] * attention_mask.shape[1]) query_lengths = [0] * hidden_states.shape[0] if query_lengths is None else query_lengths prompt_lengths = [0] * hidden_states.shape[0] if prompt_lengths is None else prompt_lengths if not isinstance(query_lengths, torch.Tensor): query_lengths = torch.tensor(query_lengths, device=hidden_states.device) if not isinstance(prompt_lengths, torch.Tensor): prompt_lengths = torch.tensor(prompt_lengths, device=hidden_states.device) if cutoff_layers is None: max_layer = self.config.num_hidden_layers cutoff_layers = [max_layer] if isinstance(cutoff_layers, int): max_layer = cutoff_layers cutoff_layers = [cutoff_layers] else: max_layer = max(cutoff_layers) for idx, decoder_layer in enumerate(self.layers): if self.config.layer_wise: if idx in cutoff_layers and output_hidden_states: all_hidden_states += (self.norm(hidden_states),) all_attention_masks += (attention_mask,) if idx == max_layer: break elif output_hidden_states: all_hidden_states += (hidden_states,) if compress_layer is not None and compress_ratio is not None and idx in compress_layer and idx != 0: if is_padding_left: raise ValueError('You must use right padding...') hidden_states, attention_mask = token_compress(compress_ratio, hidden_states, attention_mask, query_lengths, prompt_lengths) seq_length = hidden_states.shape[1] cache_position = torch.arange(0, seq_length, device=hidden_states.device) position_ids = cache_position.unsqueeze(0) causal_mask = self._update_causal_mask( attention_mask, hidden_states, cache_position, past_key_values, output_attentions ) if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( decoder_layer.__call__, hidden_states, causal_mask, position_ids, past_key_values, output_attentions, use_cache, cache_position, ) else: layer_outputs = decoder_layer( hidden_states, attention_mask=causal_mask, position_ids=position_ids, past_key_value=past_key_values, output_attentions=output_attentions, use_cache=use_cache, cache_position=cache_position, ) hidden_states = layer_outputs[0] if output_attentions: all_self_attns += (layer_outputs[1],) hidden_states = self.norm(hidden_states) # add hidden states from the last decoder layer if not self.config.layer_wise: if output_hidden_states: all_hidden_states += (hidden_states,) all_attention_masks += (attention_mask,) else: if output_hidden_states and self.config.num_hidden_layers == max_layer: all_hidden_states += (hidden_states,) all_attention_masks += (attention_mask,) next_cache = next_decoder_cache if use_cache else None if not return_dict: return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) return CostWiseModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=next_cache, hidden_states=all_hidden_states, attentions=all_self_attns, attention_masks=all_attention_masks ) def _update_causal_mask( self, attention_mask: torch.Tensor, input_tensor: torch.Tensor, cache_position: torch.Tensor, past_key_values: Cache, output_attentions: bool, ): if self.config._attn_implementation == "flash_attention_2": if attention_mask is not None and 0.0 in attention_mask: return attention_mask return None dtype, device = input_tensor.dtype, input_tensor.device min_dtype = torch.finfo(dtype).min sequence_length = input_tensor.shape[1] if past_key_values is not None: target_length = past_key_values.get_max_length() else: target_length = attention_mask.shape[-1] if attention_mask is not None else input_tensor.shape[1] if attention_mask is not None and attention_mask.dim() == 4: # in this case we assume that the mask comes already in inverted form and requires no inversion or slicing if attention_mask.max() != 0: raise ValueError("Custom 4D attention mask should be passed in inverted form with max==0`") causal_mask = attention_mask else: causal_mask = torch.full( (sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device ) if sequence_length != 1: causal_mask = torch.triu(causal_mask, diagonal=1) causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1) causal_mask = causal_mask[None, None, :, :].expand(input_tensor.shape[0], 1, -1, -1) if attention_mask is not None: causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit mask_length = attention_mask.shape[-1] padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :] padding_mask = padding_mask == 0 causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill( padding_mask, min_dtype ) return causal_mask class CostWiseHead(nn.Module): """Head for sentence-level classification tasks.""" def __init__(self, input_size, output_size): super().__init__() self.linear_head = nn.Linear(input_size, output_size, bias=False) def forward(self, **kwargs): return self.linear_head(**kwargs) class CostWiseGemmaForCausalLM(CostWiseGemma2PreTrainedModel): _tied_weights_keys = ["lm_head.weight"] def __init__(self, config: CostWiseGemmaConfig): super().__init__(config) self.model = CostWiseGemmaModel(config) self.vocab_size = config.vocab_size if not config.layer_wise: self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) else: self.lm_head = nn.ModuleList( [CostWiseHead(config.hidden_size, 1) for _ in range( config.start_layer, config.num_hidden_layers + 1, config.layer_sep )] ) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.model.embed_tokens def set_input_embeddings(self, value): self.model.embed_tokens = value def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings def set_decoder(self, decoder): self.model = decoder def get_decoder(self): return self.model @add_start_docstrings_to_model_forward(GEMMA2_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, compress_layer: Optional[int] = None, compress_ratio: Optional[int] = None, cutoff_layers: Optional[List[int]] = None, query_lengths: Optional[int] = None, prompt_lengths: Optional[int] = None, ) -> Union[Tuple, CostWiseCausalLMOutputWithPast]: r""" Args: labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, transformers., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, transformers., config.vocab_size]`. Returns: Example: ```python >>> from transformers import AutoTokenizer, GemmaForCausalLM >>> model = GemmaForCausalLM.from_pretrained("google/gemma-2-9b") >>> tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-9b") >>> prompt = "What is your favorite condiment?" >>> inputs = tokenizer(prompt, return_tensors="pt") >>> # Generate >>> generate_ids = model.generate(inputs.input_ids, max_length=30) >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] "What is your favorite condiment?" ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if compress_ratio is not None and compress_ratio == 1: compress_ratio = None if self.config.layer_wise: if cutoff_layers is None: cutoff_layers = [self.config.num_hidden_layers] elif isinstance(cutoff_layers, int): cutoff_layers = [cutoff_layers] can_use_layers = list(range(self.config.start_layer, self.config.num_hidden_layers + 1, self.config.layer_sep)) remove_layers = [i for i in cutoff_layers if i not in can_use_layers] if len(remove_layers) > 0: logger.warning_once( f"layers {remove_layers} are incompatible with the setting. They will be removed..." ) cutoff_layers = [i for i in cutoff_layers if i not in remove_layers] if len(cutoff_layers) == 0: raise ValueError(f"Your cutoff layers must in [{self.config.start_layer}, {self.config.num_hidden_layers}]") # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) outputs = self.model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, cache_position=cache_position, compress_layer=compress_layer, compress_ratio=compress_ratio, query_lengths=query_lengths, prompt_lengths=prompt_lengths, cutoff_layers=cutoff_layers, ) if not self.config.layer_wise: hidden_states = outputs[0] logits = self.lm_head(hidden_states) if self.config.final_logit_softcapping is not None: logits = logits / self.config.final_logit_softcapping logits = torch.tanh(logits) logits = logits * self.config.final_logit_softcapping logits = logits.float() loss = None if labels is not None: # Shift so that tokens < n predict n shift_logits = logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() # Flatten the tokens loss_fct = CrossEntropyLoss() shift_logits = shift_logits.view(-1, self.config.vocab_size) shift_labels = shift_labels.view(-1) # Enable model parallelism shift_labels = shift_labels.to(shift_logits.device) loss = loss_fct(shift_logits, shift_labels) else: hidden_states = outputs.hidden_states logits = () for i in range(len(hidden_states)): tmp_logits = self.lm_head[i].linear_head(hidden_states[i]) if self.config.final_logit_softcapping is not None: tmp_logits = tmp_logits / self.config.final_logit_softcapping tmp_logits = torch.tanh(tmp_logits) tmp_logits = tmp_logits * self.config.final_logit_softcapping tmp_logits = tmp_logits.float() tmp_logits = tmp_logits.reshape(hidden_states[i].shape[0], -1) logits = logits + (tmp_logits,) loss = None if not return_dict: output = (logits,) + outputs[1:] return (loss,) + output if loss is not None else output return CostWiseCausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, attention_masks=outputs[-1] if self.model.config.layer_wise else outputs[-1][-1] ) def prepare_inputs_for_generation( self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, cache_position=None, use_cache=True, **kwargs, ): past_length = 0 if past_key_values is not None: # Past key values are always initialized with a `Cache` object -> no need for if-else anymore past_length = cache_position[0] if cache_position is not None else torch.tensor(0, device=input_ids.device) max_cache_length = ( torch.tensor(past_key_values.get_max_length(), device=input_ids.device) if past_key_values.get_max_length() is not None else None ) cache_length = past_length if max_cache_length is None else torch.min(max_cache_length, past_length) # Keep only the unprocessed tokens: # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where # some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as input) if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]: input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :] # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard # input_ids based on the past_length. elif past_length < input_ids.shape[1]: input_ids = input_ids[:, past_length:] # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens. # If we are about to go beyond the maximum cache length, we need to crop the input attention mask. if ( max_cache_length is not None and attention_mask is not None and cache_length + input_ids.shape[1] > max_cache_length ): attention_mask = attention_mask[:, -max_cache_length:] position_ids = kwargs.get("position_ids", None) if attention_mask is not None and position_ids is None: # create position_ids on the fly for batch generation position_ids = attention_mask.long().cumsum(-1) - 1 position_ids.masked_fill_(attention_mask == 0, 1) if past_key_values: position_ids = position_ids[:, -input_ids.shape[1] :] # if `inputs_embeds` are passed, we only want to use them in the 1st generation step if inputs_embeds is not None and past_length == 0: model_inputs = {"inputs_embeds": inputs_embeds} else: # The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise # recompiles graphs as the stride of the inputs is a guard. Ref: https://github.com/huggingface/transformers/pull/29114 # TODO: use `next_tokens` directly instead. model_inputs = {"input_ids": input_ids.contiguous()} input_length = position_ids.shape[-1] if position_ids is not None else input_ids.shape[-1] if cache_position is None: cache_position = torch.arange(past_length, past_length + input_length, device=input_ids.device) elif use_cache: cache_position = cache_position[-input_length:] model_inputs.update( { "position_ids": position_ids, "cache_position": cache_position, "past_key_values": past_key_values, "use_cache": use_cache, "attention_mask": attention_mask, } ) return model_inputs @staticmethod def _reorder_cache(past_key_values, beam_idx): reordered_past = () for layer_past in past_key_values: reordered_past += ( tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), ) return reordered_past