update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-sa-4.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- common_voice
|
7 |
+
metrics:
|
8 |
+
- wer
|
9 |
+
model-index:
|
10 |
+
- name: wav2vec2-detect-toxic-th
|
11 |
+
results:
|
12 |
+
- task:
|
13 |
+
name: Automatic Speech Recognition
|
14 |
+
type: automatic-speech-recognition
|
15 |
+
dataset:
|
16 |
+
name: common_voice
|
17 |
+
type: common_voice
|
18 |
+
config: th
|
19 |
+
split: validation
|
20 |
+
args: th
|
21 |
+
metrics:
|
22 |
+
- name: Wer
|
23 |
+
type: wer
|
24 |
+
value: 0.4550641940085592
|
25 |
+
---
|
26 |
+
|
27 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
28 |
+
should probably proofread and complete it, then remove this comment. -->
|
29 |
+
|
30 |
+
# wav2vec2-detect-toxic-th
|
31 |
+
|
32 |
+
This model is a fine-tuned version of [airesearch/wav2vec2-large-xlsr-53-th](https://huggingface.co/airesearch/wav2vec2-large-xlsr-53-th) on the common_voice dataset.
|
33 |
+
It achieves the following results on the evaluation set:
|
34 |
+
- Loss: 1.5867
|
35 |
+
- Wer: 0.4551
|
36 |
+
|
37 |
+
## Model description
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Intended uses & limitations
|
42 |
+
|
43 |
+
More information needed
|
44 |
+
|
45 |
+
## Training and evaluation data
|
46 |
+
|
47 |
+
More information needed
|
48 |
+
|
49 |
+
## Training procedure
|
50 |
+
|
51 |
+
### Training hyperparameters
|
52 |
+
|
53 |
+
The following hyperparameters were used during training:
|
54 |
+
- learning_rate: 0.0001
|
55 |
+
- train_batch_size: 32
|
56 |
+
- eval_batch_size: 16
|
57 |
+
- seed: 42
|
58 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
59 |
+
- lr_scheduler_type: linear
|
60 |
+
- lr_scheduler_warmup_steps: 30
|
61 |
+
- num_epochs: 100
|
62 |
+
- mixed_precision_training: Native AMP
|
63 |
+
|
64 |
+
### Training results
|
65 |
+
|
66 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
67 |
+
|:-------------:|:-----:|:----:|:---------------:|:------:|
|
68 |
+
| 5.4333 | 3.23 | 100 | 3.3662 | 1.0 |
|
69 |
+
| 3.3254 | 6.45 | 200 | 3.2575 | 1.0 |
|
70 |
+
| 2.5091 | 9.68 | 300 | 1.2965 | 0.5571 |
|
71 |
+
| 1.1749 | 12.9 | 400 | 1.0687 | 0.5464 |
|
72 |
+
| 0.9091 | 16.13 | 500 | 1.0564 | 0.4872 |
|
73 |
+
| 0.756 | 19.35 | 600 | 1.0998 | 0.4757 |
|
74 |
+
| 0.6527 | 22.58 | 700 | 1.1492 | 0.4829 |
|
75 |
+
| 0.5879 | 25.81 | 800 | 1.1916 | 0.4786 |
|
76 |
+
| 0.5184 | 29.03 | 900 | 1.2662 | 0.4815 |
|
77 |
+
| 0.4688 | 32.26 | 1000 | 1.2109 | 0.4864 |
|
78 |
+
| 0.4587 | 35.48 | 1100 | 1.3144 | 0.4722 |
|
79 |
+
| 0.4005 | 38.71 | 1200 | 1.3111 | 0.4686 |
|
80 |
+
| 0.3851 | 41.94 | 1300 | 1.3420 | 0.4786 |
|
81 |
+
| 0.3563 | 45.16 | 1400 | 1.3679 | 0.4743 |
|
82 |
+
| 0.3591 | 48.39 | 1500 | 1.4444 | 0.4643 |
|
83 |
+
| 0.325 | 51.61 | 1600 | 1.4076 | 0.4722 |
|
84 |
+
| 0.3409 | 54.84 | 1700 | 1.4586 | 0.4629 |
|
85 |
+
| 0.3019 | 58.06 | 1800 | 1.4579 | 0.4529 |
|
86 |
+
| 0.292 | 61.29 | 1900 | 1.4887 | 0.4522 |
|
87 |
+
| 0.2729 | 64.52 | 2000 | 1.4966 | 0.4608 |
|
88 |
+
| 0.2656 | 67.74 | 2100 | 1.5232 | 0.4593 |
|
89 |
+
| 0.2575 | 70.97 | 2200 | 1.4984 | 0.4508 |
|
90 |
+
| 0.2532 | 74.19 | 2300 | 1.5332 | 0.4544 |
|
91 |
+
| 0.2474 | 77.42 | 2400 | 1.5301 | 0.4529 |
|
92 |
+
| 0.2539 | 80.65 | 2500 | 1.5214 | 0.4601 |
|
93 |
+
| 0.2526 | 83.87 | 2600 | 1.5413 | 0.4572 |
|
94 |
+
| 0.2601 | 87.1 | 2700 | 1.5553 | 0.4608 |
|
95 |
+
| 0.2315 | 90.32 | 2800 | 1.5768 | 0.4515 |
|
96 |
+
| 0.2477 | 93.55 | 2900 | 1.5787 | 0.4650 |
|
97 |
+
| 0.2363 | 96.77 | 3000 | 1.5900 | 0.4565 |
|
98 |
+
| 0.242 | 100.0 | 3100 | 1.5867 | 0.4551 |
|
99 |
+
|
100 |
+
|
101 |
+
### Framework versions
|
102 |
+
|
103 |
+
- Transformers 4.28.0
|
104 |
+
- Pytorch 2.0.1+cu118
|
105 |
+
- Datasets 1.16.1
|
106 |
+
- Tokenizers 0.13.3
|