BBexist commited on
Commit
e8f096e
·
verified ·
1 Parent(s): b880f8d

Model save

Browse files
Files changed (1) hide show
  1. README.md +82 -0
README.md ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: meta-llama/Llama-3.2-1B-Instruct
3
+ library_name: peft
4
+ license: llama3.2
5
+ tags:
6
+ - trl
7
+ - dpo
8
+ - generated_from_trainer
9
+ model-index:
10
+ - name: llama3.2-1B-dpo-v1
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # llama3.2-1B-dpo-v1
18
+
19
+ This model is a fine-tuned version of [meta-llama/Llama-3.2-1B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct) on an unknown dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 0.5037
22
+ - Rewards/chosen: -1.5976
23
+ - Rewards/rejected: -4.4612
24
+ - Rewards/accuracies: 0.7913
25
+ - Rewards/margins: 2.8637
26
+ - Logps/rejected: -449.0548
27
+ - Logps/chosen: -492.4157
28
+ - Logits/rejected: -0.4987
29
+ - Logits/chosen: -0.2456
30
+
31
+ ## Model description
32
+
33
+ More information needed
34
+
35
+ ## Intended uses & limitations
36
+
37
+ More information needed
38
+
39
+ ## Training and evaluation data
40
+
41
+ More information needed
42
+
43
+ ## Training procedure
44
+
45
+ ### Training hyperparameters
46
+
47
+ The following hyperparameters were used during training:
48
+ - learning_rate: 5e-05
49
+ - train_batch_size: 6
50
+ - eval_batch_size: 4
51
+ - seed: 42
52
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
53
+ - lr_scheduler_type: cosine
54
+ - lr_scheduler_warmup_ratio: 0.1
55
+ - num_epochs: 1
56
+
57
+ ### Training results
58
+
59
+ | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
60
+ |:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
61
+ | 0.5478 | 0.0763 | 700 | 0.5414 | -0.1038 | -1.2895 | 0.7302 | 1.1857 | -417.3377 | -477.4783 | 0.2274 | 0.3639 |
62
+ | 0.5243 | 0.1527 | 1400 | 0.6105 | -1.3917 | -3.5270 | 0.7313 | 2.1353 | -439.7127 | -490.3575 | 0.3525 | 0.5136 |
63
+ | 0.6483 | 0.2290 | 2100 | 0.6370 | -3.1503 | -5.7506 | 0.7482 | 2.6003 | -461.9483 | -507.9432 | 0.2785 | 0.4243 |
64
+ | 0.687 | 0.3053 | 2800 | 0.5835 | -0.2196 | -2.3802 | 0.7391 | 2.1606 | -428.2447 | -478.6364 | 0.3201 | 0.4561 |
65
+ | 0.5813 | 0.3816 | 3500 | 0.5808 | -0.6116 | -3.0983 | 0.7609 | 2.4868 | -435.4256 | -482.5557 | 0.0172 | 0.2140 |
66
+ | 0.7066 | 0.4580 | 4200 | 0.5681 | -1.1058 | -3.4796 | 0.7564 | 2.3738 | -439.2385 | -487.4986 | 0.0611 | 0.2653 |
67
+ | 0.6408 | 0.5343 | 4900 | 0.5910 | -0.7319 | -3.5281 | 0.7659 | 2.7962 | -439.7232 | -483.7594 | -0.0603 | 0.1582 |
68
+ | 0.4565 | 0.6106 | 5600 | 0.5367 | -1.0688 | -3.9321 | 0.7867 | 2.8633 | -443.7639 | -487.1283 | -0.1924 | 0.0583 |
69
+ | 0.5482 | 0.6869 | 6300 | 0.5267 | -1.4234 | -4.2466 | 0.7888 | 2.8232 | -446.9083 | -490.6742 | -0.4528 | -0.2006 |
70
+ | 0.5196 | 0.7633 | 7000 | 0.5322 | -2.2017 | -5.1279 | 0.7888 | 2.9261 | -455.7211 | -498.4576 | -0.6046 | -0.3654 |
71
+ | 0.4858 | 0.8396 | 7700 | 0.5116 | -2.0986 | -5.0640 | 0.7938 | 2.9653 | -455.0820 | -497.4264 | -0.5200 | -0.2768 |
72
+ | 0.4581 | 0.9159 | 8400 | 0.5051 | -1.6669 | -4.5613 | 0.7913 | 2.8944 | -450.0557 | -493.1090 | -0.5097 | -0.2589 |
73
+ | 0.3934 | 0.9923 | 9100 | 0.5037 | -1.5976 | -4.4612 | 0.7913 | 2.8637 | -449.0548 | -492.4157 | -0.4987 | -0.2456 |
74
+
75
+
76
+ ### Framework versions
77
+
78
+ - PEFT 0.8.2
79
+ - Transformers 4.45.1
80
+ - Pytorch 2.1.2+cu121
81
+ - Datasets 2.16.1
82
+ - Tokenizers 0.20.0