upload
Browse files- README.md +52 -0
- config.json +16 -0
- pytorch_model.bin +3 -0
- rwkv_vocab_v20230424.json +0 -0
- special_tokens_map.json +1 -0
- tokenization_rwkv_world.py +505 -0
- tokenizer_config.json +12 -0
README.md
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
### Run Huggingface RWKV World Model
|
2 |
+
|
3 |
+
|
4 |
+
#### CPU
|
5 |
+
|
6 |
+
```python
|
7 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
8 |
+
|
9 |
+
model = AutoModelForCausalLM.from_pretrained("BBuf/RWKV-4-World-7B")
|
10 |
+
tokenizer = AutoTokenizer.from_pretrained("BBuf/RWKV-4-World-7B", trust_remote_code=True)
|
11 |
+
|
12 |
+
text = "\nIn a shocking finding, scientist discovered a herd of dragons living in a remote, previously unexplored valley, in Tibet. Even more surprising to the researchers was the fact that the dragons spoke perfect Chinese."
|
13 |
+
prompt = f'Question: {text.strip()}\n\nAnswer:'
|
14 |
+
|
15 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
16 |
+
output = model.generate(inputs["input_ids"], max_new_tokens=256)
|
17 |
+
print(tokenizer.decode(output[0].tolist(), skip_special_tokens=True))
|
18 |
+
```
|
19 |
+
|
20 |
+
output:
|
21 |
+
|
22 |
+
```shell
|
23 |
+
Question: In a shocking finding, scientist discovered a herd of dragons living in a remote, previously unexplored valley, in Tibet. Even more surprising to the researchers was the fact that the dragons spoke perfect Chinese.
|
24 |
+
|
25 |
+
Answer: The dragons in the valley spoke perfect Chinese, according to the scientist who discovered them.
|
26 |
+
```
|
27 |
+
|
28 |
+
#### GPU
|
29 |
+
|
30 |
+
```python
|
31 |
+
import torch
|
32 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
33 |
+
|
34 |
+
model = AutoModelForCausalLM.from_pretrained("BBuf/RWKV-4-World-7B", torch_dtype=torch.float16).to(0)
|
35 |
+
tokenizer = AutoTokenizer.from_pretrained("BBuf/RWKV-4-World-7B", trust_remote_code=True)
|
36 |
+
|
37 |
+
text = "你叫什么名字?"
|
38 |
+
prompt = f'Question: {text.strip()}\n\nAnswer:'
|
39 |
+
|
40 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(0)
|
41 |
+
output = model.generate(inputs["input_ids"], max_new_tokens=40)
|
42 |
+
print(tokenizer.decode(output[0].tolist(), skip_special_tokens=True))
|
43 |
+
```
|
44 |
+
|
45 |
+
output:
|
46 |
+
|
47 |
+
```shell
|
48 |
+
Question: 你叫什么名字?
|
49 |
+
|
50 |
+
Answer: 我是一个人工智能语言模型,没有名字。
|
51 |
+
```
|
52 |
+
|
config.json
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"attention_hidden_size": 4096,
|
3 |
+
"bos_token_id": 0,
|
4 |
+
"context_length": 1024,
|
5 |
+
"eos_token_id": 0,
|
6 |
+
"hidden_size": 4096,
|
7 |
+
"intermediate_size": 16384,
|
8 |
+
"layer_norm_epsilon": 1e-05,
|
9 |
+
"model_type": "rwkv",
|
10 |
+
"num_hidden_layers": 32,
|
11 |
+
"rescale_every": 6,
|
12 |
+
"tie_word_embeddings": false,
|
13 |
+
"transformers_version": "4.33.1",
|
14 |
+
"use_cache": true,
|
15 |
+
"vocab_size": 65536
|
16 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:51016cb8bed6ce2c03bdc8f1a1bfb31915661f7a7137e0c96e58ff1bdc83fd73
|
3 |
+
size 15035373569
|
rwkv_vocab_v20230424.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{}
|
tokenization_rwkv_world.py
ADDED
@@ -0,0 +1,505 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 The Open AI Team Authors and The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Tokenization classes for OpenAI GPT."""
|
16 |
+
|
17 |
+
import json
|
18 |
+
import os
|
19 |
+
from typing import TYPE_CHECKING, List, Optional, Tuple, Union
|
20 |
+
from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer
|
21 |
+
from transformers.utils import logging, to_py_obj
|
22 |
+
from transformers.tokenization_utils_base import BatchEncoding
|
23 |
+
|
24 |
+
import bisect
|
25 |
+
import itertools
|
26 |
+
import re
|
27 |
+
import unicodedata
|
28 |
+
from collections import OrderedDict
|
29 |
+
from typing import Any, Dict, List, Optional, Tuple, Union, overload
|
30 |
+
|
31 |
+
from transformers.tokenization_utils_base import (
|
32 |
+
ENCODE_KWARGS_DOCSTRING,
|
33 |
+
ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING,
|
34 |
+
INIT_TOKENIZER_DOCSTRING,
|
35 |
+
AddedToken,
|
36 |
+
BatchEncoding,
|
37 |
+
EncodedInput,
|
38 |
+
EncodedInputPair,
|
39 |
+
PreTokenizedInput,
|
40 |
+
PreTokenizedInputPair,
|
41 |
+
PreTrainedTokenizerBase,
|
42 |
+
TextInput,
|
43 |
+
TextInputPair,
|
44 |
+
TruncationStrategy,
|
45 |
+
)
|
46 |
+
from transformers.utils import PaddingStrategy, TensorType, add_end_docstrings, logging
|
47 |
+
|
48 |
+
|
49 |
+
if TYPE_CHECKING:
|
50 |
+
from transformers.pipelines.conversational import Conversation
|
51 |
+
|
52 |
+
logger = logging.get_logger(__name__)
|
53 |
+
|
54 |
+
VOCAB_FILES_NAMES = {
|
55 |
+
"vocab_file": "rwkv_vocab_v20230424.json",
|
56 |
+
}
|
57 |
+
|
58 |
+
|
59 |
+
class DATrie:
|
60 |
+
class Node:
|
61 |
+
def __init__(self, is_leaf=False, leaf_data=None, tail=""):
|
62 |
+
self._is_leaf = is_leaf
|
63 |
+
self._leaf_data = leaf_data
|
64 |
+
self._tail = tail
|
65 |
+
self._next_map = {}
|
66 |
+
|
67 |
+
def is_leaf(self):
|
68 |
+
return self._is_leaf
|
69 |
+
|
70 |
+
def set_leaf(self):
|
71 |
+
self._is_leaf = True
|
72 |
+
|
73 |
+
def has_next(self, w):
|
74 |
+
if w in self._next_map:
|
75 |
+
return True
|
76 |
+
return False
|
77 |
+
|
78 |
+
def add_node(self, w, node):
|
79 |
+
self._next_map[w] = node
|
80 |
+
|
81 |
+
def get_node(self, w):
|
82 |
+
if w in self._next_map:
|
83 |
+
return self._next_map[w]
|
84 |
+
return None
|
85 |
+
|
86 |
+
def get_tail(self):
|
87 |
+
return self._tail
|
88 |
+
|
89 |
+
def get_data(self):
|
90 |
+
return self._leaf_data
|
91 |
+
|
92 |
+
def set_data(self, data):
|
93 |
+
self._leaf_data = data
|
94 |
+
|
95 |
+
def __init__(self, special_ids):
|
96 |
+
self.root = self.Node()
|
97 |
+
self.data = {}
|
98 |
+
self.r_data = {}
|
99 |
+
self.special_ids = special_ids
|
100 |
+
|
101 |
+
def insert(self, word, data):
|
102 |
+
self.data[word] = data
|
103 |
+
self.r_data[data] = word
|
104 |
+
idx = 0
|
105 |
+
node = self.root
|
106 |
+
while idx < len(word):
|
107 |
+
w = word[idx]
|
108 |
+
is_leaf = (idx == (len(word) - 1))
|
109 |
+
leaf_data = (data if is_leaf else None)
|
110 |
+
# 不存在则插入
|
111 |
+
if not node.has_next(w):
|
112 |
+
node.add_node(w, self.Node(is_leaf=is_leaf, leaf_data=leaf_data))
|
113 |
+
# last word
|
114 |
+
node = node.get_node(w)
|
115 |
+
idx += 1
|
116 |
+
if not node.is_leaf():
|
117 |
+
node.set_leaf()
|
118 |
+
node.set_data(data)
|
119 |
+
|
120 |
+
def findStrict(self, word):
|
121 |
+
idx = 0
|
122 |
+
node = self.root
|
123 |
+
while node is not None and idx < len(word):
|
124 |
+
w = word[idx]
|
125 |
+
if not node.has_next(w):
|
126 |
+
return None
|
127 |
+
# last word
|
128 |
+
node = node.get_node(w)
|
129 |
+
idx += 1
|
130 |
+
if node.is_leaf():
|
131 |
+
return node.get_data()
|
132 |
+
return None
|
133 |
+
|
134 |
+
def prefix(self, word):
|
135 |
+
idx = 0
|
136 |
+
node = self.root
|
137 |
+
result = []
|
138 |
+
while node is not None and idx < len(word):
|
139 |
+
w = word[idx]
|
140 |
+
if not node.has_next(w):
|
141 |
+
return result
|
142 |
+
# last word
|
143 |
+
node = node.get_node(w)
|
144 |
+
if node.is_leaf():
|
145 |
+
result.append([word[:idx + 1], node.get_data()])
|
146 |
+
idx += 1
|
147 |
+
return result
|
148 |
+
|
149 |
+
def max_prefix(self, content, start_idx):
|
150 |
+
idx = start_idx
|
151 |
+
node = self.root
|
152 |
+
l = len(content)
|
153 |
+
result = [["", ], ]
|
154 |
+
while node is not None and idx < l:
|
155 |
+
w = content[idx]
|
156 |
+
if not node.has_next(w):
|
157 |
+
return result[-1]
|
158 |
+
# last word
|
159 |
+
node = node.get_node(w)
|
160 |
+
if node.is_leaf():
|
161 |
+
result.append([content[start_idx:idx + 1], node.get_data()])
|
162 |
+
idx += 1
|
163 |
+
return result[-1]
|
164 |
+
|
165 |
+
def max_score(self, content, start_idx):
|
166 |
+
idx = start_idx
|
167 |
+
node = self.root
|
168 |
+
l = len(content)
|
169 |
+
result = [["", (3, 0)], ]
|
170 |
+
while node is not None and idx < l:
|
171 |
+
w = content[idx]
|
172 |
+
if not node.has_next(w):
|
173 |
+
break
|
174 |
+
# last word
|
175 |
+
node = node.get_node(w)
|
176 |
+
if node.is_leaf():
|
177 |
+
result.append([content[start_idx:idx + 1], node.get_data()])
|
178 |
+
idx += 1
|
179 |
+
if len(result) > 1:
|
180 |
+
result = sorted(result, key=lambda x: x[1][1])
|
181 |
+
return result[-1]
|
182 |
+
|
183 |
+
def match(self, content, add_unk=True, unk_id=-1, **kwargs):
|
184 |
+
# length
|
185 |
+
l = len(content)
|
186 |
+
i = 0
|
187 |
+
result_list = []
|
188 |
+
while i < l:
|
189 |
+
match_word = self.max_prefix(content=content, start_idx=i)
|
190 |
+
# print(match_word)
|
191 |
+
w = match_word[0]
|
192 |
+
if len(w) > 0:
|
193 |
+
result_list.append(match_word[1])
|
194 |
+
i += len(w)
|
195 |
+
else:
|
196 |
+
if add_unk:
|
197 |
+
result_list.append(unk_id)
|
198 |
+
i += 1
|
199 |
+
return result_list
|
200 |
+
|
201 |
+
def id2str(self, ids, escape_special_ids=True, end_ids=[], **kwargs):
|
202 |
+
res_str = ""
|
203 |
+
for rid in ids:
|
204 |
+
if rid in self.r_data:
|
205 |
+
if rid in end_ids:
|
206 |
+
break
|
207 |
+
if escape_special_ids and rid in self.special_ids:
|
208 |
+
continue
|
209 |
+
rstr = self.r_data[rid]
|
210 |
+
res_str += rstr
|
211 |
+
elif rid == 0:
|
212 |
+
break
|
213 |
+
else:
|
214 |
+
print("ERROR unknown id %d" % rid)
|
215 |
+
res_str += "UNK"
|
216 |
+
return res_str
|
217 |
+
|
218 |
+
def id2str_v2(self, ids, escape_special_ids=True, end_ids=[], **kwargs):
|
219 |
+
res_str = ""
|
220 |
+
for rid in ids:
|
221 |
+
if rid in self.r_data:
|
222 |
+
if rid in end_ids:
|
223 |
+
break
|
224 |
+
rstr = self.r_data[rid]
|
225 |
+
if escape_special_ids and rid in self.special_ids:
|
226 |
+
continue
|
227 |
+
res_str += rstr
|
228 |
+
elif rid == 0:
|
229 |
+
break
|
230 |
+
else:
|
231 |
+
print("ERROR unknown id %d" % rid)
|
232 |
+
res_str += "UNK"
|
233 |
+
return res_str
|
234 |
+
|
235 |
+
|
236 |
+
class RWKVWorldTokenizer(PreTrainedTokenizer):
|
237 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
238 |
+
model_input_names = ["input_ids", "attention_mask"]
|
239 |
+
|
240 |
+
def __init__(
|
241 |
+
self,
|
242 |
+
vocab_file,
|
243 |
+
errors="replace",
|
244 |
+
**kwargs
|
245 |
+
):
|
246 |
+
self.add_bos_token = False
|
247 |
+
super().__init__(
|
248 |
+
errors=errors,
|
249 |
+
**kwargs,
|
250 |
+
)
|
251 |
+
|
252 |
+
with open(vocab_file, encoding="utf-8") as vocab_handle:
|
253 |
+
self.encoder = json.load(vocab_handle)
|
254 |
+
self.decoder = {v: k for k, v in self.encoder.items()}
|
255 |
+
self.trie = DATrie(self.all_special_ids)
|
256 |
+
for k, v in self.encoder.items():
|
257 |
+
self.trie.insert(k, v)
|
258 |
+
self.errors = errors # how to handle errors in decoding
|
259 |
+
self.cache = {}
|
260 |
+
|
261 |
+
@property
|
262 |
+
def vocab_size(self):
|
263 |
+
return len(self.encoder)
|
264 |
+
|
265 |
+
def get_vocab(self):
|
266 |
+
return dict(self.encoder, **self.added_tokens_encoder)
|
267 |
+
|
268 |
+
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
|
269 |
+
if self.add_bos_token:
|
270 |
+
bos_token_ids = [self.bos_token_id]
|
271 |
+
else:
|
272 |
+
bos_token_ids = []
|
273 |
+
|
274 |
+
output = bos_token_ids + token_ids_0
|
275 |
+
|
276 |
+
if token_ids_1 is None:
|
277 |
+
return output
|
278 |
+
|
279 |
+
return output + bos_token_ids + token_ids_1
|
280 |
+
|
281 |
+
def get_special_tokens_mask(
|
282 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None,
|
283 |
+
already_has_special_tokens: bool = False
|
284 |
+
) -> List[int]:
|
285 |
+
"""
|
286 |
+
Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding
|
287 |
+
special tokens using the tokenizer `prepare_for_model` or `encode_plus` methods.
|
288 |
+
|
289 |
+
Args:
|
290 |
+
token_ids_0 (`List[int]`):
|
291 |
+
List of IDs.
|
292 |
+
token_ids_1 (`List[int]`, *optional*):
|
293 |
+
Optional second list of IDs for sequence pairs.
|
294 |
+
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
295 |
+
Whether or not the token list is already formatted with special tokens for the model.
|
296 |
+
|
297 |
+
Returns:
|
298 |
+
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
299 |
+
"""
|
300 |
+
if already_has_special_tokens:
|
301 |
+
return super().get_special_tokens_mask(
|
302 |
+
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
303 |
+
)
|
304 |
+
|
305 |
+
if not self.add_bos_token:
|
306 |
+
return super().get_special_tokens_mask(
|
307 |
+
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=False
|
308 |
+
)
|
309 |
+
|
310 |
+
if token_ids_1 is None:
|
311 |
+
return [1] + ([0] * len(token_ids_0))
|
312 |
+
return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1))
|
313 |
+
|
314 |
+
def _tokenize(self, text, **kwargs):
|
315 |
+
"""Tokenize a string."""
|
316 |
+
return self.trie.match(text, unk_id=self.unk_token_id, **kwargs)
|
317 |
+
|
318 |
+
def _decode(self,
|
319 |
+
token_ids: Union[int, List[int], "np.ndarray", "torch.Tensor", "tf.Tensor"],
|
320 |
+
skip_special_tokens: bool = False,
|
321 |
+
**kwargs
|
322 |
+
) -> str:
|
323 |
+
|
324 |
+
# Convert inputs to python lists
|
325 |
+
token_ids = to_py_obj(token_ids)
|
326 |
+
if isinstance(token_ids, int):
|
327 |
+
if token_ids in self.all_special_ids and skip_special_tokens:
|
328 |
+
return ""
|
329 |
+
return self.decoder.get(token_ids, self.unk_token)
|
330 |
+
elif isinstance(token_ids, list):
|
331 |
+
return self.trie.id2str(
|
332 |
+
token_ids,
|
333 |
+
escape_special_ids=skip_special_tokens,
|
334 |
+
**kwargs
|
335 |
+
)
|
336 |
+
else:
|
337 |
+
return token_ids
|
338 |
+
|
339 |
+
def _convert_token_to_id(self, token):
|
340 |
+
"""Converts a token (str) in an id using the vocab."""
|
341 |
+
return self.encoder.get(token, self.encoder.get(self.unk_token))
|
342 |
+
|
343 |
+
def _convert_id_to_token(self, index):
|
344 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
345 |
+
return self.decoder.get(index)
|
346 |
+
|
347 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
348 |
+
if not os.path.exists(save_directory):
|
349 |
+
os.mkdir(save_directory)
|
350 |
+
if not os.path.isdir(save_directory):
|
351 |
+
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
352 |
+
return
|
353 |
+
vocab_file = os.path.join(
|
354 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
355 |
+
)
|
356 |
+
|
357 |
+
with open(vocab_file, "w", encoding="utf-8") as f:
|
358 |
+
f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n")
|
359 |
+
|
360 |
+
return (vocab_file,)
|
361 |
+
|
362 |
+
def prepare_for_tokenization(self, text, **kwargs):
|
363 |
+
return (text, kwargs)
|
364 |
+
|
365 |
+
def _encode_plus(
|
366 |
+
self,
|
367 |
+
text: Union[TextInput, EncodedInput],
|
368 |
+
add_special_tokens: bool = True,
|
369 |
+
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
|
370 |
+
truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
|
371 |
+
max_length: Optional[int] = None,
|
372 |
+
stride: int = 0,
|
373 |
+
pad_to_multiple_of: Optional[int] = None,
|
374 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
375 |
+
return_token_type_ids: Optional[bool] = None,
|
376 |
+
return_attention_mask: Optional[bool] = None,
|
377 |
+
return_overflowing_tokens: bool = False,
|
378 |
+
return_special_tokens_mask: bool = False,
|
379 |
+
return_offsets_mapping: bool = False,
|
380 |
+
return_length: bool = False,
|
381 |
+
verbose: bool = True,
|
382 |
+
**kwargs
|
383 |
+
) -> BatchEncoding:
|
384 |
+
def get_input_ids(text):
|
385 |
+
if isinstance(text, str):
|
386 |
+
text_id = self.trie.match(text, unk_id=self.unk_token_id)
|
387 |
+
return text_id
|
388 |
+
elif isinstance(text, list) and len(text) > 0 and isinstance(text[0], str):
|
389 |
+
return [self.trie.match(t, unk_id=self.unk_token_id) for t in text]
|
390 |
+
elif isinstance(text, (list, tuple)) and len(text) > 0 and isinstance(text[0], int):
|
391 |
+
return text
|
392 |
+
else:
|
393 |
+
raise ValueError(
|
394 |
+
"Input is not valid. Should be a string, a list/tuple of strings or a list/tuple of integers."
|
395 |
+
)
|
396 |
+
|
397 |
+
if return_offsets_mapping:
|
398 |
+
raise NotImplementedError(
|
399 |
+
"return_offset_mapping is not available when using Python tokenizers. "
|
400 |
+
"To use this feature, change your tokenizer to one deriving from "
|
401 |
+
"transformers.PreTrainedTokenizerFast. "
|
402 |
+
"More information on available tokenizers at "
|
403 |
+
"https://github.com/huggingface/transformers/pull/2674"
|
404 |
+
)
|
405 |
+
|
406 |
+
first_ids = get_input_ids(text)
|
407 |
+
|
408 |
+
return self.prepare_for_model(
|
409 |
+
first_ids,
|
410 |
+
pair_ids=None,
|
411 |
+
add_special_tokens=add_special_tokens,
|
412 |
+
padding=padding_strategy.value,
|
413 |
+
truncation=truncation_strategy.value,
|
414 |
+
max_length=max_length,
|
415 |
+
stride=stride,
|
416 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
417 |
+
return_tensors=return_tensors,
|
418 |
+
prepend_batch_axis=True,
|
419 |
+
return_attention_mask=return_attention_mask,
|
420 |
+
return_token_type_ids=return_token_type_ids,
|
421 |
+
return_overflowing_tokens=return_overflowing_tokens,
|
422 |
+
return_special_tokens_mask=return_special_tokens_mask,
|
423 |
+
return_length=return_length,
|
424 |
+
verbose=verbose,
|
425 |
+
)
|
426 |
+
|
427 |
+
def _batch_encode_plus(
|
428 |
+
self,
|
429 |
+
batch_text_or_text_pairs: Union[
|
430 |
+
List[TextInput],
|
431 |
+
List[EncodedInput],
|
432 |
+
],
|
433 |
+
add_special_tokens: bool = True,
|
434 |
+
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
|
435 |
+
truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
|
436 |
+
max_length: Optional[int] = None,
|
437 |
+
stride: int = 0,
|
438 |
+
pad_to_multiple_of: Optional[int] = None,
|
439 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
440 |
+
return_token_type_ids: Optional[bool] = None,
|
441 |
+
return_attention_mask: Optional[bool] = None,
|
442 |
+
return_overflowing_tokens: bool = False,
|
443 |
+
return_special_tokens_mask: bool = False,
|
444 |
+
return_offsets_mapping: bool = False,
|
445 |
+
return_length: bool = False,
|
446 |
+
verbose: bool = True,
|
447 |
+
**kwargs
|
448 |
+
) -> BatchEncoding:
|
449 |
+
def get_input_ids(text):
|
450 |
+
if isinstance(text, str):
|
451 |
+
text_id = self.trie.match(text, unk_id=self.unk_token_id)
|
452 |
+
return text_id
|
453 |
+
elif isinstance(text, list) and len(text) > 0 and isinstance(text[0], str):
|
454 |
+
return [self.trie.match(t, unk_id=self.unk_token_id) for t in text]
|
455 |
+
elif isinstance(text, (list, tuple)) and len(text) > 0 and isinstance(text[0], int):
|
456 |
+
return text
|
457 |
+
else:
|
458 |
+
raise ValueError(
|
459 |
+
"Input is not valid. Should be a string, a list/tuple of strings or a list/tuple of integers."
|
460 |
+
)
|
461 |
+
|
462 |
+
if return_offsets_mapping:
|
463 |
+
raise NotImplementedError(
|
464 |
+
"return_offset_mapping is not available when using Python tokenizers. "
|
465 |
+
"To use this feature, change your tokenizer to one deriving from "
|
466 |
+
"transformers.PreTrainedTokenizerFast."
|
467 |
+
)
|
468 |
+
|
469 |
+
input_ids = []
|
470 |
+
for ids_or_pair_ids in batch_text_or_text_pairs:
|
471 |
+
if not isinstance(ids_or_pair_ids, (list, tuple)):
|
472 |
+
ids, pair_ids = ids_or_pair_ids, None
|
473 |
+
else:
|
474 |
+
ids, pair_ids = ids_or_pair_ids
|
475 |
+
|
476 |
+
first_ids = get_input_ids(ids)
|
477 |
+
second_ids = get_input_ids(pair_ids) if pair_ids is not None else None
|
478 |
+
input_ids.append((first_ids, second_ids))
|
479 |
+
|
480 |
+
batch_outputs = self._batch_prepare_for_model(
|
481 |
+
input_ids,
|
482 |
+
add_special_tokens=add_special_tokens,
|
483 |
+
padding_strategy=padding_strategy,
|
484 |
+
truncation_strategy=truncation_strategy,
|
485 |
+
max_length=max_length,
|
486 |
+
stride=stride,
|
487 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
488 |
+
return_attention_mask=return_attention_mask,
|
489 |
+
return_token_type_ids=return_token_type_ids,
|
490 |
+
return_overflowing_tokens=return_overflowing_tokens,
|
491 |
+
return_special_tokens_mask=return_special_tokens_mask,
|
492 |
+
return_length=return_length,
|
493 |
+
return_tensors=return_tensors,
|
494 |
+
verbose=verbose,
|
495 |
+
)
|
496 |
+
|
497 |
+
return BatchEncoding(batch_outputs)
|
498 |
+
|
499 |
+
def _build_conversation_input_ids(self, conversation: "Conversation") -> List[int]:
|
500 |
+
input_ids = []
|
501 |
+
for is_user, text in conversation.iter_texts():
|
502 |
+
input_ids.extend(self.encode(text, add_special_tokens=False) + [self.eos_token_id])
|
503 |
+
if len(input_ids) > self.model_max_length:
|
504 |
+
input_ids = input_ids[-self.model_max_length:]
|
505 |
+
return input_ids
|
tokenizer_config.json
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"name_or_path": "rwkv-world",
|
3 |
+
"add_prefix_space": false,
|
4 |
+
"tokenizer_class": "RWKVWorldTokenizer",
|
5 |
+
"use_fast": false,
|
6 |
+
"auto_map": {
|
7 |
+
"AutoTokenizer": [
|
8 |
+
"tokenization_rwkv_world.RWKVWorldTokenizer",
|
9 |
+
null
|
10 |
+
]
|
11 |
+
}
|
12 |
+
}
|