--- license: apache-2.0 base_model: google-bert/bert-base-multilingual-uncased tags: - generated_from_trainer model-index: - name: NLP_whole_dataseet_ results: [] --- # NLP_whole_dataseet_ This model is a fine-tuned version of [google-bert/bert-base-multilingual-uncased](https://huggingface.co/google-bert/bert-base-multilingual-uncased) on the None dataset. It achieves the following results on the evaluation set: - eval_loss: 0.0225 - eval_accuracy: 0.9954 - eval_precision: 0.9951 - eval_recall: 0.9960 - eval_f1: 0.9955 - eval_runtime: 0.792 - eval_samples_per_second: 275.256 - eval_steps_per_second: 8.839 - epoch: 5.0 - step: 275 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 8 ### Framework versions - Transformers 4.42.4 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1