--- library_name: transformers datasets: - ccdv/cnn_dailymail language: - en base_model: - google-bert/bert-base-uncased --- # Model Card for Model ID ## Model Details ### Model Description This is the model is used for making or generating summary of the provided paragraph. - **Developed by:** BEASTBOYJAY - **Model type:** Transformer(encoder) - **Language(s) (NLP):** English - **Finetuned from model:** Bert-base-uncased ## Uses - For the summarization purpose only ## Bias, Risks, and Limitations This model is fine-tuned on very small dataset can need more fine-tuning for better results.(Fine-tuned this model only for eductional purposes) ## How to Get Started with the Model Use the code below to get started with the model. ``` from transformers import EncoderDecoderModel, BertTokenizer class TextSummarizer: def __init__(self, model_path, tokenizer_name="bert-base-uncased"): self.tokenizer = BertTokenizer.from_pretrained(tokenizer_name) self.model = EncoderDecoderModel.from_pretrained(model_path) def summarize(self, text, max_input_length=512): inputs = self.tokenizer( text, return_tensors="pt", truncation=True, padding="max_length", max_length=max_input_length, ) summary_ids = self.model.generate( inputs["input_ids"], attention_mask=inputs["attention_mask"], decoder_start_token_id=self.tokenizer.cls_token_id, max_length=128, num_beams=4, length_penalty=1.5, no_repeat_ngram_size=1, early_stopping=True, ) summary = self.tokenizer.decode(summary_ids[0], skip_special_tokens=True) return summary if __name__ == "__main__": summarizer = TextSummarizer(model_path="BEASTBOYJAY/my-fine-tuned-summarizer") test_article = "Your article or paragraph" summary = summarizer.summarize(test_article) print("Generated Summary:", summary) ```