File size: 8,131 Bytes
0ef693f
 
 
 
13698fb
 
0ef693f
 
7a21a72
290af7d
 
 
 
 
 
 
29fc3a8
290af7d
 
7a21a72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
290af7d
7a21a72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ef693f
 
 
 
 
13698fb
 
 
0ef693f
 
 
 
 
 
 
 
13698fb
0ef693f
650dbcf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ef693f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a21a72
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
---
license: apache-2.0
tags:
- generated_from_trainer
- smol_llama
- llama2
metrics:
- accuracy
base_model: BEE-spoke-data/NanoLlama-GQA-L10-A32_KV8-v12-minipile
inference:
  parameters:
    max_new_tokens: 64
    do_sample: true
    temperature: 0.8
    repetition_penalty: 1.15
    no_repeat_ngram_size: 4
    eta_cutoff: 0.001
    renormalize_logits: true
widget:
- text: My name is El Microondas the Wise and
  example_title: El Microondas
- text: Kennesaw State University is a public
  example_title: Kennesaw State University
- text: Bungie Studios is an American video game developer. They are most famous for
    developing the award winning Halo series of video games. They also made Destiny.
    The studio was founded
  example_title: Bungie
- text: The Mona Lisa is a world-renowned painting created by
  example_title: Mona Lisa
- text: The Harry Potter series, written by J.K. Rowling, begins with the book titled
  example_title: Harry Potter Series
- text: 'Question: I have cities, but no houses. I have mountains, but no trees. I
    have water, but no fish. What am I?

    Answer:'
  example_title: Riddle
- text: The process of photosynthesis involves the conversion of
  example_title: Photosynthesis
- text: Jane went to the store to buy some groceries. She picked up apples, oranges,
    and a loaf of bread. When she got home, she realized she forgot
  example_title: Story Continuation
- text: 'Problem 2: If a train leaves Station A at 9:00 AM and travels at 60 mph,
    and another train leaves Station B at 10:00 AM and travels at 80 mph, when will
    they meet if the distance between the stations is 300 miles?

    To determine'
  example_title: Math Problem
- text: In the context of computer programming, an algorithm is
  example_title: Algorithm Definition
pipeline_tag: text-generation
model-index:
- name: NanoLlama-GQA-L10-A32_KV8-v13-KI
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 23.81
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=BEE-spoke-data/NanoLlama-GQA-L10-A32_KV8-v13-KI
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 29.39
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=BEE-spoke-data/NanoLlama-GQA-L10-A32_KV8-v13-KI
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 25.37
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=BEE-spoke-data/NanoLlama-GQA-L10-A32_KV8-v13-KI
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 44.77
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=BEE-spoke-data/NanoLlama-GQA-L10-A32_KV8-v13-KI
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 51.14
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=BEE-spoke-data/NanoLlama-GQA-L10-A32_KV8-v13-KI
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 0.91
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=BEE-spoke-data/NanoLlama-GQA-L10-A32_KV8-v13-KI
      name: Open LLM Leaderboard
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# BEE-spoke-data/NanoLlama-GQA-L10-A32_KV8-v13-KI

> note that training still WIP

This model is a fine-tuned version of [BEE-spoke-data/NanoLlama-GQA-L10-A32_KV8-v12-minipile](https://huggingface.co/BEE-spoke-data/NanoLlama-GQA-L10-A32_KV8-v12-minipile) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.5937
- Accuracy: 0.4948

## Training and evaluation data

KI dataset



`hf-causal-experimental (pretrained=BEE-spoke-data/NanoLlama-GQA-L10-A32_KV8-v13-KI,revision=main,trust_remote_code=True,dtype='float'), limit: None, provide_description: False, num_fewshot: 0, batch_size: 8`

|     Task     |Version| Metric | Value |   |Stderr|
|--------------|------:|--------|------:|---|-----:|
|arc_easy      |      0|acc     | 0.4322|±  |0.0102|
|              |       |acc_norm| 0.3960|±  |0.0100|
|boolq         |      1|acc     | 0.6196|±  |0.0085|
|lambada_openai|      0|ppl     |61.6595|±  |2.4362|
|              |       |acc     | 0.2779|±  |0.0062|
|openbookqa    |      0|acc     | 0.1540|±  |0.0162|
|              |       |acc_norm| 0.2840|±  |0.0202|
|piqa          |      0|acc     | 0.6028|±  |0.0114|
|              |       |acc_norm| 0.6028|±  |0.0114|
|winogrande    |      0|acc     | 0.5193|±  |0.0140|

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.00025
- train_batch_size: 8
- eval_batch_size: 4
- seed: 2280
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-08
- lr_scheduler_type: inverse_sqrt
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 1.0

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 2.5744        | 0.08  | 200  | 2.7138          | 0.4776   |
| 2.5387        | 0.16  | 400  | 2.6713          | 0.4836   |
| 2.4718        | 0.23  | 600  | 2.6462          | 0.4873   |
| 2.4681        | 0.31  | 800  | 2.6328          | 0.4892   |
| 2.5351        | 0.39  | 1000 | 2.6227          | 0.4908   |
| 2.5316        | 0.47  | 1200 | 2.6159          | 0.4914   |
| 2.527         | 0.54  | 1400 | 2.6103          | 0.4921   |
| 2.4838        | 0.62  | 1600 | 2.6058          | 0.4930   |
| 2.4483        | 0.7   | 1800 | 2.6024          | 0.4934   |
| 2.426         | 0.78  | 2000 | 2.5998          | 0.4937   |
| 2.4685        | 0.86  | 2200 | 2.5961          | 0.4944   |
| 2.4473        | 0.93  | 2400 | 2.5937          | 0.4948   |


### Framework versions

- Transformers 4.36.0.dev0
- Pytorch 2.1.0
- Datasets 2.15.0
- Tokenizers 0.15.0

# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_BEE-spoke-data__NanoLlama-GQA-L10-A32_KV8-v13-KI)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |29.23|
|AI2 Reasoning Challenge (25-Shot)|23.81|
|HellaSwag (10-Shot)              |29.39|
|MMLU (5-Shot)                    |25.37|
|TruthfulQA (0-shot)              |44.77|
|Winogrande (5-shot)              |51.14|
|GSM8k (5-shot)                   | 0.91|