File size: 1,979 Bytes
67a526d 2b4ffac 67a526d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
---
license: apache-2.0
base_model: Qwen/Qwen2-1.5B
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: Qwen2-1.5B-stepbasin-books-vN
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/pszemraj/long-generation-tests/runs/ethp25f9)
# Qwen2-1.5B-stepbasin-books-vN
This model is a fine-tuned version of [Qwen/Qwen2-1.5B](https://huggingface.co/Qwen/Qwen2-1.5B) on the BEE-spoke-data/stepbasin-books dataset.
It achieves the following results on the evaluation set:
- Loss: 2.8110
- Accuracy: 0.4298
- Num Input Tokens Seen: 44040192
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 80085
- gradient_accumulation_steps: 32
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Input Tokens Seen |
|:-------------:|:------:|:----:|:---------------:|:--------:|:-----------------:|
| 2.7792 | 0.9967 | 28 | 2.8183 | 0.4287 | 14729216 |
| 2.6971 | 1.9933 | 56 | 2.8112 | 0.4297 | 29458432 |
| 2.7116 | 2.9900 | 84 | 2.8110 | 0.4298 | 44040192 |
### Framework versions
- Transformers 4.42.4
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
|