pszemraj commited on
Commit
d9e0489
1 Parent(s): e5ae3b7

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +8 -5
README.md CHANGED
@@ -6,6 +6,8 @@ tags:
6
  - feature-extraction
7
  - sentence-similarity
8
  - transformers
 
 
9
  license: artistic-2.0
10
  datasets:
11
  - pszemraj/synthetic-text-similarity
@@ -13,11 +15,12 @@ language:
13
  - en
14
  ---
15
 
16
- # BEE-spoke-data/mega-small-embed-syntheticSTS-16384
17
 
18
  This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
19
 
20
- <!--- Describe your model here -->
 
21
 
22
  ## Usage
23
 
@@ -42,7 +45,7 @@ Then you can use the model like this:
42
  from sentence_transformers import SentenceTransformer
43
  sentences = ["This is an example sentence", "Each sentence is converted"]
44
 
45
- model = SentenceTransformer('BEE-spoke-data/mega-small-embed-syntheticSTS-16384')
46
  embeddings = model.encode(sentences)
47
  print(embeddings)
48
  ```
@@ -68,8 +71,8 @@ def mean_pooling(model_output, attention_mask):
68
  sentences = ['This is an example sentence', 'Each sentence is converted']
69
 
70
  # Load model from HuggingFace Hub
71
- tokenizer = AutoTokenizer.from_pretrained('BEE-spoke-data/mega-small-embed-syntheticSTS-16384')
72
- model = AutoModel.from_pretrained('BEE-spoke-data/mega-small-embed-syntheticSTS-16384')
73
 
74
  # Tokenize sentences
75
  encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
 
6
  - feature-extraction
7
  - sentence-similarity
8
  - transformers
9
+ - 16k
10
+ - efficient attention
11
  license: artistic-2.0
12
  datasets:
13
  - pszemraj/synthetic-text-similarity
 
15
  - en
16
  ---
17
 
18
+ # mega-small-embed-synthSTS-16384: v1
19
 
20
  This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
21
 
22
+ - This model is a "v1" and we may make improved versions in the future. Or, we may not.
23
+
24
 
25
  ## Usage
26
 
 
45
  from sentence_transformers import SentenceTransformer
46
  sentences = ["This is an example sentence", "Each sentence is converted"]
47
 
48
+ model = SentenceTransformer('BEE-spoke-data/mega-small-embed-synthSTS-16384-v1')
49
  embeddings = model.encode(sentences)
50
  print(embeddings)
51
  ```
 
71
  sentences = ['This is an example sentence', 'Each sentence is converted']
72
 
73
  # Load model from HuggingFace Hub
74
+ tokenizer = AutoTokenizer.from_pretrained('BEE-spoke-data/mega-small-embed-synthSTS-16384-v1')
75
+ model = AutoModel.from_pretrained('BEE-spoke-data/mega-small-embed-synthSTS-16384-v1')
76
 
77
  # Tokenize sentences
78
  encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')