Update README.md
Browse files
README.md
CHANGED
@@ -6,6 +6,8 @@ tags:
|
|
6 |
- feature-extraction
|
7 |
- sentence-similarity
|
8 |
- transformers
|
|
|
|
|
9 |
license: artistic-2.0
|
10 |
datasets:
|
11 |
- pszemraj/synthetic-text-similarity
|
@@ -13,11 +15,12 @@ language:
|
|
13 |
- en
|
14 |
---
|
15 |
|
16 |
-
#
|
17 |
|
18 |
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
19 |
|
20 |
-
|
|
|
21 |
|
22 |
## Usage
|
23 |
|
@@ -42,7 +45,7 @@ Then you can use the model like this:
|
|
42 |
from sentence_transformers import SentenceTransformer
|
43 |
sentences = ["This is an example sentence", "Each sentence is converted"]
|
44 |
|
45 |
-
model = SentenceTransformer('BEE-spoke-data/mega-small-embed-
|
46 |
embeddings = model.encode(sentences)
|
47 |
print(embeddings)
|
48 |
```
|
@@ -68,8 +71,8 @@ def mean_pooling(model_output, attention_mask):
|
|
68 |
sentences = ['This is an example sentence', 'Each sentence is converted']
|
69 |
|
70 |
# Load model from HuggingFace Hub
|
71 |
-
tokenizer = AutoTokenizer.from_pretrained('BEE-spoke-data/mega-small-embed-
|
72 |
-
model = AutoModel.from_pretrained('BEE-spoke-data/mega-small-embed-
|
73 |
|
74 |
# Tokenize sentences
|
75 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
|
|
6 |
- feature-extraction
|
7 |
- sentence-similarity
|
8 |
- transformers
|
9 |
+
- 16k
|
10 |
+
- efficient attention
|
11 |
license: artistic-2.0
|
12 |
datasets:
|
13 |
- pszemraj/synthetic-text-similarity
|
|
|
15 |
- en
|
16 |
---
|
17 |
|
18 |
+
# mega-small-embed-synthSTS-16384: v1
|
19 |
|
20 |
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
21 |
|
22 |
+
- This model is a "v1" and we may make improved versions in the future. Or, we may not.
|
23 |
+
|
24 |
|
25 |
## Usage
|
26 |
|
|
|
45 |
from sentence_transformers import SentenceTransformer
|
46 |
sentences = ["This is an example sentence", "Each sentence is converted"]
|
47 |
|
48 |
+
model = SentenceTransformer('BEE-spoke-data/mega-small-embed-synthSTS-16384-v1')
|
49 |
embeddings = model.encode(sentences)
|
50 |
print(embeddings)
|
51 |
```
|
|
|
71 |
sentences = ['This is an example sentence', 'Each sentence is converted']
|
72 |
|
73 |
# Load model from HuggingFace Hub
|
74 |
+
tokenizer = AutoTokenizer.from_pretrained('BEE-spoke-data/mega-small-embed-synthSTS-16384-v1')
|
75 |
+
model = AutoModel.from_pretrained('BEE-spoke-data/mega-small-embed-synthSTS-16384-v1')
|
76 |
|
77 |
# Tokenize sentences
|
78 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|