File size: 2,785 Bytes
094332e
 
5e6e62e
 
094332e
5e6e62e
0cebd14
5e6e62e
 
30fe15d
5e6e62e
30fe15d
5e6e62e
b538b13
30fe15d
e964950
5e6e62e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed25d13
 
5e6e62e
e964950
5e6e62e
e964950
5e6e62e
b538b13
5e6e62e
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
---
license: apache-2.0
metrics:
- cer
---
## Welcome
If you find this model helpful, please *like* this model and star us on https://github.com/LianjiaTech/BELLE and https://github.com/shuaijiang/Whisper-Finetune

# Belle-distilwhisper-large-v2-zh
Fine tune [distilwhisper-large-v2](https://huggingface.co/distil-whisper/distil-large-v2) to enhance Chinese speech recognition capabilities.

Similar to distilwhisper-large-v2, Belle-distilwhisper-large-v2-zh is **5.8 times faster** and has **51% fewer parameters** compared to whisper-large-v2.

Despite having 51% fewer parameters, Belle-distilwhisper-large-v2-zh achieves a relative improvement of **-3% to 35%** over whisper-large-v2.

It's important to note that the original distilwhisper-large-v2 cannot transcribe Chinese (it only outputs English).

## Usage
```python

from transformers import pipeline

transcriber = pipeline(
  "automatic-speech-recognition", 
  model="BELLE-2/Belle-distilwhisper-large-v2-zh"
)

transcriber.model.config.forced_decoder_ids = (
  transcriber.tokenizer.get_decoder_prompt_ids(
    language="zh", 
    task="transcribe"
  )
)

transcription = transcriber("my_audio.wav") 

```

## Fine-tuning
|       Model      |  (Re)Sample Rate   |                      Train Datasets         | Fine-tuning (full or peft) | 
|:----------------:|:-------:|:----------------------------------------------------------:|:-----------:|
| Belle-distilwhisper-large-v2-zh | 16KHz | [AISHELL-1](https://openslr.magicdatatech.com/resources/33/) [AISHELL-2](https://www.aishelltech.com/aishell_2) [WenetSpeech](https://wenet.org.cn/WenetSpeech/) [HKUST](https://catalog.ldc.upenn.edu/LDC2005S15)  |   [full fine-tuning](https://github.com/shuaijiang/Whisper-Finetune)   |    

If you want to fine-thuning the model on your datasets, please reference to the [github repo](https://github.com/shuaijiang/Whisper-Finetune)


## CER(%)  ↓ 
|      Model       | Parameters(M) |Language Tag| aishell_1_test( ↓ ) |aishell_2_test( ↓ )| wenetspeech_net ( ↓ )| wenetspeech_meeting( ↓ )| HKUST_dev( ↓ )|   
|:----------------:|:-------:|:-------:|:-----------:|:-----------:|:--------:|:-----------:|:-------:|
| whisper-large-v2 |1550 |Chinese |   8.818%   | 6.183%  |  12.343%   |  26.413%  | 31.917% |
| distilwhisper-large-v2 |756| Chinese |  -   | -  |  -   |  -  | - |
| Belle-distilwhisper-large-v2-zh| 756 | Chinese |   5.958%    | 6.477%  |   12.786%    | 17.039% | 20.771% |


## Citation

Please cite our paper and github when using our code, data or model.

```
@misc{BELLE,
  author = {BELLEGroup},
  title = {BELLE: Be Everyone's Large Language model Engine},
  year = {2023},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/LianjiaTech/BELLE}},
}
```