|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Tokenization classes for SMALL100."""
|
|
import json
|
|
import os
|
|
from pathlib import Path
|
|
from shutil import copyfile
|
|
from typing import Any, Dict, List, Optional, Tuple, Union
|
|
|
|
import sentencepiece
|
|
|
|
from transformers.tokenization_utils import BatchEncoding, PreTrainedTokenizer
|
|
from transformers.utils import logging
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
SPIECE_UNDERLINE = "▁"
|
|
|
|
VOCAB_FILES_NAMES = {
|
|
"vocab_file": "vocab.json",
|
|
"spm_file": "sentencepiece.bpe.model",
|
|
"tokenizer_config_file": "tokenizer_config.json",
|
|
}
|
|
|
|
PRETRAINED_VOCAB_FILES_MAP = {
|
|
"vocab_file": {
|
|
"alirezamsh/small100": "https://huggingface.co/alirezamsh/small100/resolve/main/vocab.json",
|
|
},
|
|
"spm_file": {
|
|
"alirezamsh/small100": "https://huggingface.co/alirezamsh/small100/resolve/main/sentencepiece.bpe.model",
|
|
},
|
|
"tokenizer_config_file": {
|
|
"alirezamsh/small100": "https://huggingface.co/alirezamsh/small100/resolve/main/tokenizer_config.json",
|
|
},
|
|
}
|
|
|
|
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
|
|
"alirezamsh/small100": 1024,
|
|
}
|
|
|
|
|
|
FAIRSEQ_LANGUAGE_CODES = {
|
|
"m2m100": ["af", "am", "ar", "ast", "az", "ba", "be", "bg", "bn", "br", "bs", "ca", "ceb", "cs", "cy", "da", "de",
|
|
"el", "en", "es", "et", "fa", "ff", "fi", "fr", "fy", "ga", "gd", "gl", "gu", "ha", "he", "hi", "hr",
|
|
"ht", "hu", "hy", "id", "ig", "ilo", "is", "it", "ja", "jv", "ka", "kk", "km", "kn", "ko", "lb", "lg",
|
|
"ln", "lo", "lt", "lv", "mg", "mk", "ml", "mn", "mr", "ms", "my", "ne", "nl", "no", "ns", "oc", "or",
|
|
"pa", "pl", "ps", "pt", "ro", "ru", "sd", "si", "sk", "sl", "so", "sq", "sr", "ss", "su", "sv", "sw",
|
|
"ta", "th", "tl", "tn", "tr", "uk", "ur", "uz", "vi", "wo", "xh", "yi", "yo", "zh", "zu"]
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
class M2M100Tokenizer(PreTrainedTokenizer):
|
|
"""
|
|
Construct an SMALL100 tokenizer. Based on [SentencePiece](https://github.com/google/sentencepiece).
|
|
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
|
|
this superclass for more information regarding those methods.
|
|
Args:
|
|
vocab_file (`str`):
|
|
Path to the vocabulary file.
|
|
spm_file (`str`):
|
|
Path to [SentencePiece](https://github.com/google/sentencepiece) file (generally has a .spm extension) that
|
|
contains the vocabulary.
|
|
tgt_lang (`str`, *optional*):
|
|
A string representing the target language.
|
|
eos_token (`str`, *optional*, defaults to `"</s>"`):
|
|
The end of sequence token.
|
|
sep_token (`str`, *optional*, defaults to `"</s>"`):
|
|
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
|
|
sequence classification or for a text and a question for question answering. It is also used as the last
|
|
token of a sequence built with special tokens.
|
|
unk_token (`str`, *optional*, defaults to `"<unk>"`):
|
|
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
|
token instead.
|
|
pad_token (`str`, *optional*, defaults to `"<pad>"`):
|
|
The token used for padding, for example when batching sequences of different lengths.
|
|
language_codes (`str`, *optional*):
|
|
What language codes to use. Should be `"m2m100"`.
|
|
sp_model_kwargs (`dict`, *optional*):
|
|
Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for
|
|
SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things,
|
|
to set:
|
|
- `enable_sampling`: Enable subword regularization.
|
|
- `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout.
|
|
- `nbest_size = {0,1}`: No sampling is performed.
|
|
- `nbest_size > 1`: samples from the nbest_size results.
|
|
- `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
|
|
using forward-filtering-and-backward-sampling algorithm.
|
|
- `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for
|
|
BPE-dropout.
|
|
Examples:
|
|
```python
|
|
>>> from tokenization_small100 import M2M100Tokenizer
|
|
>>> tokenizer = M2M100Tokenizer.from_pretrained("alirezamsh/small100", tgt_lang="ro")
|
|
>>> src_text = " UN Chief Says There Is No Military Solution in Syria"
|
|
>>> tgt_text = "Şeful ONU declară că nu există o soluţie militară în Siria"
|
|
>>> model_inputs = tokenizer(src_text, text_target=tgt_text, return_tensors="pt")
|
|
>>> model(**model_inputs) # should work
|
|
```"""
|
|
|
|
vocab_files_names = VOCAB_FILES_NAMES
|
|
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
|
|
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
|
model_input_names = ["input_ids", "attention_mask"]
|
|
|
|
prefix_tokens: List[int] = []
|
|
suffix_tokens: List[int] = []
|
|
|
|
def __init__(
|
|
self,
|
|
vocab_file,
|
|
spm_file,
|
|
tgt_lang=None,
|
|
bos_token="<s>",
|
|
eos_token="</s>",
|
|
sep_token="</s>",
|
|
pad_token="<pad>",
|
|
unk_token="<unk>",
|
|
language_codes="m2m100",
|
|
sp_model_kwargs: Optional[Dict[str, Any]] = None,
|
|
num_madeup_words=8,
|
|
**kwargs,
|
|
) -> None:
|
|
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
|
|
|
|
self.language_codes = language_codes
|
|
fairseq_language_code = FAIRSEQ_LANGUAGE_CODES[language_codes]
|
|
self.lang_code_to_token = {lang_code: f"__{lang_code}__" for lang_code in fairseq_language_code}
|
|
|
|
kwargs["additional_special_tokens"] = kwargs.get("additional_special_tokens", [])
|
|
kwargs["additional_special_tokens"] += [
|
|
self.get_lang_token(lang_code)
|
|
for lang_code in fairseq_language_code
|
|
if self.get_lang_token(lang_code) not in kwargs["additional_special_tokens"]
|
|
]
|
|
|
|
self.vocab_file = vocab_file
|
|
self.encoder = load_json(vocab_file)
|
|
self.decoder = {v: k for k, v in self.encoder.items()}
|
|
self.spm_file = spm_file
|
|
self.sp_model = load_spm(spm_file, self.sp_model_kwargs)
|
|
|
|
self.encoder_size = len(self.encoder)
|
|
|
|
self.lang_token_to_id = {
|
|
self.get_lang_token(lang_code): self.encoder_size + i for i, lang_code in enumerate(fairseq_language_code)
|
|
}
|
|
self.lang_code_to_id = {lang_code: self.encoder_size + i for i, lang_code in enumerate(fairseq_language_code)}
|
|
self.id_to_lang_token = {v: k for k, v in self.lang_token_to_id.items()}
|
|
|
|
self._tgt_lang = tgt_lang if tgt_lang is not None else "en"
|
|
self.cur_lang_id = self.get_lang_id(self._tgt_lang)
|
|
self.num_madeup_words = num_madeup_words
|
|
|
|
super().__init__(
|
|
tgt_lang=tgt_lang,
|
|
bos_token=bos_token,
|
|
eos_token=eos_token,
|
|
sep_token=sep_token,
|
|
unk_token=unk_token,
|
|
pad_token=pad_token,
|
|
language_codes=language_codes,
|
|
sp_model_kwargs=self.sp_model_kwargs,
|
|
num_madeup_words=num_madeup_words,
|
|
**kwargs,
|
|
)
|
|
|
|
self.set_lang_special_tokens(self._tgt_lang)
|
|
|
|
@property
|
|
def vocab_size(self) -> int:
|
|
return len(self.encoder) + len(self.lang_token_to_id) + self.num_madeup_words
|
|
|
|
@property
|
|
def tgt_lang(self) -> str:
|
|
return self._tgt_lang
|
|
|
|
@tgt_lang.setter
|
|
def tgt_lang(self, new_tgt_lang: str) -> None:
|
|
self._tgt_lang = new_tgt_lang
|
|
self.set_lang_special_tokens(self._tgt_lang)
|
|
|
|
def _tokenize(self, text: str) -> List[str]:
|
|
return self.sp_model.encode(text, out_type=str)
|
|
|
|
def _convert_token_to_id(self, token):
|
|
if token in self.lang_token_to_id:
|
|
return self.lang_token_to_id[token]
|
|
return self.encoder.get(token, self.encoder[self.unk_token])
|
|
|
|
def _convert_id_to_token(self, index: int) -> str:
|
|
"""Converts an index (integer) in a token (str) using the decoder."""
|
|
if index in self.id_to_lang_token:
|
|
return self.id_to_lang_token[index]
|
|
return self.decoder.get(index, self.unk_token)
|
|
|
|
def convert_tokens_to_string(self, tokens: List[str]) -> str:
|
|
"""Converts a sequence of tokens (strings for sub-words) in a single string."""
|
|
return self.sp_model.decode(tokens)
|
|
|
|
def get_special_tokens_mask(
|
|
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None,
|
|
already_has_special_tokens: bool = False
|
|
) -> List[int]:
|
|
"""
|
|
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
|
special tokens using the tokenizer `prepare_for_model` method.
|
|
Args:
|
|
token_ids_0 (`List[int]`):
|
|
List of IDs.
|
|
token_ids_1 (`List[int]`, *optional*):
|
|
Optional second list of IDs for sequence pairs.
|
|
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
|
Whether or not the token list is already formatted with special tokens for the model.
|
|
Returns:
|
|
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
|
"""
|
|
|
|
if already_has_special_tokens:
|
|
return super().get_special_tokens_mask(
|
|
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
|
)
|
|
|
|
prefix_ones = [1] * len(self.prefix_tokens)
|
|
suffix_ones = [1] * len(self.suffix_tokens)
|
|
if token_ids_1 is None:
|
|
return prefix_ones + ([0] * len(token_ids_0)) + suffix_ones
|
|
return prefix_ones + ([0] * len(token_ids_0)) + ([0] * len(token_ids_1)) + suffix_ones
|
|
|
|
def build_inputs_with_special_tokens(
|
|
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
|
) -> List[int]:
|
|
"""
|
|
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
|
adding special tokens. An MBART sequence has the following format, where `X` represents the sequence:
|
|
- `input_ids` (for encoder) `X [eos, src_lang_code]`
|
|
- `decoder_input_ids`: (for decoder) `X [eos, tgt_lang_code]`
|
|
BOS is never used. Pairs of sequences are not the expected use case, but they will be handled without a
|
|
separator.
|
|
Args:
|
|
token_ids_0 (`List[int]`):
|
|
List of IDs to which the special tokens will be added.
|
|
token_ids_1 (`List[int]`, *optional*):
|
|
Optional second list of IDs for sequence pairs.
|
|
Returns:
|
|
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
|
"""
|
|
if token_ids_1 is None:
|
|
if self.prefix_tokens is None:
|
|
return token_ids_0 + self.suffix_tokens
|
|
else:
|
|
return self.prefix_tokens + token_ids_0 + self.suffix_tokens
|
|
|
|
if self.prefix_tokens is None:
|
|
return token_ids_0 + token_ids_1 + self.suffix_tokens
|
|
else:
|
|
return self.prefix_tokens + token_ids_0 + token_ids_1 + self.suffix_tokens
|
|
|
|
def get_vocab(self) -> Dict:
|
|
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
|
|
vocab.update(self.added_tokens_encoder)
|
|
return vocab
|
|
|
|
def __getstate__(self) -> Dict:
|
|
state = self.__dict__.copy()
|
|
state["sp_model"] = None
|
|
return state
|
|
|
|
def __setstate__(self, d: Dict) -> None:
|
|
self.__dict__ = d
|
|
|
|
|
|
if not hasattr(self, "sp_model_kwargs"):
|
|
self.sp_model_kwargs = {}
|
|
|
|
self.sp_model = load_spm(self.spm_file, self.sp_model_kwargs)
|
|
|
|
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
|
save_dir = Path(save_directory)
|
|
if not save_dir.is_dir():
|
|
raise OSError(f"{save_directory} should be a directory")
|
|
vocab_save_path = save_dir / (
|
|
(filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["vocab_file"]
|
|
)
|
|
spm_save_path = save_dir / (
|
|
(filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["spm_file"]
|
|
)
|
|
|
|
save_json(self.encoder, vocab_save_path)
|
|
|
|
if os.path.abspath(self.spm_file) != os.path.abspath(spm_save_path) and os.path.isfile(self.spm_file):
|
|
copyfile(self.spm_file, spm_save_path)
|
|
elif not os.path.isfile(self.spm_file):
|
|
with open(spm_save_path, "wb") as fi:
|
|
content_spiece_model = self.sp_model.serialized_model_proto()
|
|
fi.write(content_spiece_model)
|
|
|
|
return (str(vocab_save_path), str(spm_save_path))
|
|
|
|
def prepare_seq2seq_batch(
|
|
self,
|
|
src_texts: List[str],
|
|
tgt_texts: Optional[List[str]] = None,
|
|
tgt_lang: str = "ro",
|
|
**kwargs,
|
|
) -> BatchEncoding:
|
|
self.tgt_lang = tgt_lang
|
|
self.set_lang_special_tokens(self.tgt_lang)
|
|
return super().prepare_seq2seq_batch(src_texts, tgt_texts, **kwargs)
|
|
|
|
def _build_translation_inputs(self, raw_inputs, tgt_lang: Optional[str], **extra_kwargs):
|
|
"""Used by translation pipeline, to prepare inputs for the generate function"""
|
|
if tgt_lang is None:
|
|
raise ValueError("Translation requires a `tgt_lang` for this model")
|
|
self.tgt_lang = tgt_lang
|
|
inputs = self(raw_inputs, add_special_tokens=True, **extra_kwargs)
|
|
return inputs
|
|
|
|
def _switch_to_input_mode(self):
|
|
self.set_lang_special_tokens(self.tgt_lang)
|
|
|
|
def _switch_to_target_mode(self):
|
|
self.prefix_tokens = None
|
|
self.suffix_tokens = [self.eos_token_id]
|
|
|
|
def set_lang_special_tokens(self, src_lang: str) -> None:
|
|
"""Reset the special tokens to the tgt lang setting. No prefix and suffix=[eos, tgt_lang_code]."""
|
|
lang_token = self.get_lang_token(src_lang)
|
|
self.cur_lang_id = self.lang_token_to_id[lang_token]
|
|
self.prefix_tokens = [self.cur_lang_id]
|
|
self.suffix_tokens = [self.eos_token_id]
|
|
|
|
def get_lang_token(self, lang: str) -> str:
|
|
return self.lang_code_to_token[lang]
|
|
|
|
def get_lang_id(self, lang: str) -> int:
|
|
lang_token = self.get_lang_token(lang)
|
|
return self.lang_token_to_id[lang_token]
|
|
|
|
|
|
def load_spm(path: str, sp_model_kwargs: Dict[str, Any]) -> sentencepiece.SentencePieceProcessor:
|
|
spm = sentencepiece.SentencePieceProcessor(**sp_model_kwargs)
|
|
spm.Load(str(path))
|
|
return spm
|
|
|
|
|
|
def load_json(path: str) -> Union[Dict, List]:
|
|
with open(path, "r") as f:
|
|
return json.load(f)
|
|
|
|
|
|
def save_json(data, path: str) -> None:
|
|
with open(path, "w") as f:
|
|
json.dump(data, f, indent=2) |