File size: 11,917 Bytes
23ccf16 78ad185 d60694d 23ccf16 c512b0b 31ce393 23ccf16 c512b0b 9777f8c c512b0b a42d89c c512b0b fd25f0c a42d89c c512b0b eb8ceb7 c512b0b b3f42e2 c512b0b b3f42e2 c512b0b b3f42e2 c512b0b 1549eae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 |
---
language: "ca"
tags:
- masked-lm
- BERTa
- catalan
widget:
- text: "El Català és una llengua molt <mask>."
- text: "Salvador Dalí va viure a <mask>."
- text: "La Costa Brava té les millors <mask> d'Espanya."
- text: "El cacaolat és un batut de <mask>."
- text: "<mask> és la capital de la Garrotxa."
- text: "Vaig al <mask> a buscar bolets."
- text: "Antoni Gaudí vas ser un <mask> molt important per la ciutat."
- text: "Catalunya és una referència en <mask> a nivell europeu."
license: apache-2.0
---
# BERTa: RoBERTa-based Catalan language model
## BibTeX citation
If you use any of these resources (datasets or models) in your work, please cite our latest paper:
```bibtex
@inproceedings{armengol-estape-etal-2021-multilingual,
title = "Are Multilingual Models the Best Choice for Moderately Under-resourced Languages? {A} Comprehensive Assessment for {C}atalan",
author = "Armengol-Estap{\'e}, Jordi and
Carrino, Casimiro Pio and
Rodriguez-Penagos, Carlos and
de Gibert Bonet, Ona and
Armentano-Oller, Carme and
Gonzalez-Agirre, Aitor and
Melero, Maite and
Villegas, Marta",
booktitle = "Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021",
month = aug,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.findings-acl.437",
doi = "10.18653/v1/2021.findings-acl.437",
pages = "4933--4946",
}
```
## Model description
BERTa is a transformer-based masked language model for the Catalan language.
It is based on the [RoBERTA](https://github.com/pytorch/fairseq/tree/master/examples/roberta) base model
and has been trained on a medium-size corpus collected from publicly available corpora and crawlers.
## Training corpora and preprocessing
The training corpus consists of several corpora gathered from web crawling and public corpora.
The publicly available corpora are:
1. the Catalan part of the [DOGC](http://opus.nlpl.eu/DOGC-v2.php) corpus, a set of documents from the Official Gazette of the Catalan Government
2. the [Catalan Open Subtitles](http://opus.nlpl.eu/download.php?f=OpenSubtitles/v2018/mono/OpenSubtitles.raw.ca.gz), a collection of translated movie subtitles
3. the non-shuffled version of the Catalan part of the [OSCAR](https://traces1.inria.fr/oscar/) corpus \\\\cite{suarez2019asynchronous},
a collection of monolingual corpora, filtered from [Common Crawl](https://commoncrawl.org/about/)
4. The [CaWac](http://nlp.ffzg.hr/resources/corpora/cawac/) corpus, a web corpus of Catalan built from the .cat top-level-domain in late 2013
the non-deduplicated version
5. the [Catalan Wikipedia articles](https://ftp.acc.umu.se/mirror/wikimedia.org/dumps/cawiki/20200801/) downloaded on 18-08-2020.
The crawled corpora are:
6. The Catalan General Crawling, obtained by crawling the 500 most popular .cat and .ad domains
7. the Catalan Government Crawling, obtained by crawling the .gencat domain and subdomains, belonging to the Catalan Government
8. the ACN corpus with 220k news items from March 2015 until October 2020, crawled from the [Catalan News Agency](https://www.acn.cat/)
To obtain a high-quality training corpus, each corpus have preprocessed with a pipeline of operations, including among the others,
sentence splitting, language detection, filtering of bad-formed sentences and deduplication of repetitive contents.
During the process, we keep document boundaries are kept.
Finally, the corpora are concatenated and further global deduplication among the corpora is applied.
The final training corpus consists of about 1,8B tokens.
## Tokenization and pretraining
The training corpus has been tokenized using a byte version of [Byte-Pair Encoding (BPE)](https://github.com/openai/gpt-2)
used in the original [RoBERTA](https://github.com/pytorch/fairseq/tree/master/examples/roberta) model with a vocabulary size of 52,000 tokens.
The BERTa pretraining consists of a masked language model training that follows the approach employed for the RoBERTa base model
with the same hyperparameters as in the original work.
The training lasted a total of 48 hours with 16 NVIDIA V100 GPUs of 16GB DDRAM.
## Evaluation
## CLUB benchmark
The BERTa model has been fine-tuned on the downstream tasks of the Catalan Language Understanding Evaluation benchmark (CLUB),
that has been created along with the model.
It contains the following tasks and their related datasets:
1. Part-of-Speech Tagging (POS)
Catalan-Ancora: from the [Universal Dependencies treebank](https://github.com/UniversalDependencies/UD_Catalan-AnCora) of the well-known Ancora corpus
2. Named Entity Recognition (NER)
**[AnCora Catalan 2.0.0](https://zenodo.org/record/4762031#.YKaFjqGxWUk)**: extracted named entities from the original [Ancora](https://doi.org/10.5281/zenodo.4762030) version,
filtering out some unconventional ones, like book titles, and transcribed them into a standard CONLL-IOB format
3. Text Classification (TC)
**[TeCla](https://doi.org/10.5281/zenodo.4627197)**: consisting of 137k news pieces from the Catalan News Agency ([ACN](https://www.acn.cat/)) corpus
4. Semantic Textual Similarity (STS)
**[Catalan semantic textual similarity](https://doi.org/10.5281/zenodo.4529183)**: consisting of more than 3000 sentence pairs, annotated with the semantic similarity between them,
scraped from the [Catalan Textual Corpus](https://doi.org/10.5281/zenodo.4519349)
5. Question Answering (QA):
**[ViquiQuAD](https://doi.org/10.5281/zenodo.4562344)**: consisting of more than 15,000 questions outsourced from Catalan Wikipedia randomly chosen from a set of 596 articles that were originally written in Catalan.
**[XQuAD](https://doi.org/10.5281/zenodo.4526223)**: the Catalan translation of XQuAD, a multilingual collection of manual translations of 1,190 question-answer pairs from English Wikipedia used only as a _test set_
Here are the train/dev/test splits of the datasets:
| Task (Dataset) | Total | Train | Dev | Test |
|:--|:--|:--|:--|:--|
| NER (Ancora) |13,581 | 10,628 | 1,427 | 1,526 |
| POS (Ancora)| 16,678 | 13,123 | 1,709 | 1,846 |
| STS | 3,073 | 2,073 | 500 | 500 |
| TC (TeCla) | 137,775 | 110,203 | 13,786 | 13,786|
| QA (ViquiQuAD) | 14,239 | 11,255 | 1,492 | 1,429 |
_The fine-tuning on downstream tasks have been performed with the HuggingFace [**Transformers**](https://github.com/huggingface/transformers) library_
## Results
Below the evaluation results on the CLUB tasks compared with the multilingual mBERT, XLM-RoBERTa models and
the Catalan WikiBERT-ca model
| Task | NER (F1) | POS (F1) | STS (Pearson) | TC (accuracy) | QA (ViquiQuAD) (F1/EM) | QA (XQuAD) (F1/EM) |
| ------------|:-------------:| -----:|:------|:-------|:------|:----|
| BERTa | **88.13** | **98.97** | **79.73** | **74.16** | **86.97/72.29** | **68.89/48.87** |
| mBERT | 86.38 | 98.82 | 76.34 | 70.56 | 86.97/72.22 | 67.15/46.51 |
| XLM-RoBERTa | 87.66 | 98.89 | 75.40 | 71.68 | 85.50/70.47 | 67.10/46.42 |
| WikiBERT-ca | 77.66 | 97.60 | 77.18 | 73.22 | 85.45/70.75 | 65.21/36.60 |
## Intended uses & limitations
The model is ready-to-use only for masked language modelling to perform the Fill Mask task (try the inference API or read the next section)
However, the is intended to be fine-tuned on non-generative downstream tasks such as Question Answering, Text Classification or Named Entity Recognition.
---
## Using BERTa
## Load model and tokenizer
``` python
from transformers import AutoTokenizer, AutoModelForMaskedLM
tokenizer = AutoTokenizer.from_pretrained("BSC-TeMU/roberta-base-ca-cased")
model = AutoModelForMaskedLM.from_pretrained("BSC-TeMU/roberta-base-ca-cased")
```
## Fill Mask task
Below, an example of how to use the masked language modelling task with a pipeline.
```python
>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='BSC-TeMU/roberta-base-ca-cased')
>>> unmasker("Situada a la costa de la mar Mediterrània, <mask> s'assenta en una plana formada "
"entre els deltes de les desembocadures dels rius Llobregat, al sud-oest, "
"i Besòs, al nord-est, i limitada pel sud-est per la línia de costa,"
"i pel nord-oest per la serralada de Collserola "
"(amb el cim del Tibidabo, 516,2 m, com a punt més alt) que segueix paral·lela "
"la línia de costa encaixant la ciutat en un perímetre molt definit.")
[
{
"sequence": " Situada a la costa de la mar Mediterrània, <mask> s'assenta en una plana formada "
"entre els deltes de les desembocadures dels rius Llobregat, al sud-oest, "
"i Besòs, al nord-est, i limitada pel sud-est per la línia de costa,"
"i pel nord-oest per la serralada de Collserola "
"(amb el cim del Tibidabo, 516,2 m, com a punt més alt) que segueix paral·lela "
"la línia de costa encaixant la ciutat en un perímetre molt definit.",
"score": 0.4177263379096985,
"token": 734,
"token_str": " Barcelona"
},
{
"sequence": " Situada a la costa de la mar Mediterrània, <mask> s'assenta en una plana formada "
"entre els deltes de les desembocadures dels rius Llobregat, al sud-oest, "
"i Besòs, al nord-est, i limitada pel sud-est per la línia de costa,"
"i pel nord-oest per la serralada de Collserola "
"(amb el cim del Tibidabo, 516,2 m, com a punt més alt) que segueix paral·lela "
"la línia de costa encaixant la ciutat en un perímetre molt definit.",
"score": 0.10696165263652802,
"token": 3849,
"token_str": " Badalona"
},
{
"sequence": " Situada a la costa de la mar Mediterrània, <mask> s'assenta en una plana formada "
"entre els deltes de les desembocadures dels rius Llobregat, al sud-oest, "
"i Besòs, al nord-est, i limitada pel sud-est per la línia de costa,"
"i pel nord-oest per la serralada de Collserola "
"(amb el cim del Tibidabo, 516,2 m, com a punt més alt) que segueix paral·lela "
"la línia de costa encaixant la ciutat en un perímetre molt definit.",
"score": 0.08135009557008743,
"token": 19349,
"token_str": " Collserola"
},
{
"sequence": " Situada a la costa de la mar Mediterrània, <mask> s'assenta en una plana formada "
"entre els deltes de les desembocadures dels rius Llobregat, al sud-oest, "
"i Besòs, al nord-est, i limitada pel sud-est per la línia de costa,"
"i pel nord-oest per la serralada de Collserola "
"(amb el cim del Tibidabo, 516,2 m, com a punt més alt) que segueix paral·lela "
"la línia de costa encaixant la ciutat en un perímetre molt definit.",
"score": 0.07330769300460815,
"token": 4974,
"token_str": " Terrassa"
},
{
"sequence": " Situada a la costa de la mar Mediterrània, <mask> s'assenta en una plana formada "
"entre els deltes de les desembocadures dels rius Llobregat, al sud-oest, "
"i Besòs, al nord-est, i limitada pel sud-est per la línia de costa,"
"i pel nord-oest per la serralada de Collserola "
"(amb el cim del Tibidabo, 516,2 m, com a punt més alt) que segueix paral·lela "
"la línia de costa encaixant la ciutat en un perímetre molt definit.",
"score": 0.03317456692457199,
"token": 14333,
"token_str": " Gavà"
}
]
```
This model was originally published as [bsc/roberta-base-ca-cased](https://huggingface.co/bsc/roberta-base-ca-cased). |