|
--- |
|
base_model: microsoft/Phi-3.5-mini-instruct |
|
library_name: peft |
|
license: mit |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: phi3.5-mini-adapter_v2 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# phi3.5-mini-adapter_v2 |
|
|
|
This model is a fine-tuned version of [microsoft/Phi-3.5-mini-instruct](https://huggingface.co/microsoft/Phi-3.5-mini-instruct) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1344 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 24 |
|
- eval_batch_size: 24 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 48 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_ratio: 0.05 |
|
- num_epochs: 50 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:------:|:----:|:---------------:| |
|
| 17.6422 | 0.4545 | 10 | 17.2166 | |
|
| 13.0308 | 0.9091 | 20 | 12.5267 | |
|
| 8.4662 | 1.3636 | 30 | 7.9483 | |
|
| 2.4521 | 1.8182 | 40 | 1.3982 | |
|
| 0.3917 | 2.2727 | 50 | 0.3427 | |
|
| 0.3042 | 2.7273 | 60 | 0.3092 | |
|
| 0.2051 | 3.1818 | 70 | 0.2451 | |
|
| 0.2043 | 3.6364 | 80 | 0.2022 | |
|
| 0.1599 | 4.0909 | 90 | 0.1907 | |
|
| 0.1658 | 4.5455 | 100 | 0.1727 | |
|
| 0.1527 | 5.0 | 110 | 0.1595 | |
|
| 0.1281 | 5.4545 | 120 | 0.1501 | |
|
| 0.1079 | 5.9091 | 130 | 0.1435 | |
|
| 0.0896 | 6.3636 | 140 | 0.1369 | |
|
| 0.097 | 6.8182 | 150 | 0.1340 | |
|
| 0.0841 | 7.2727 | 160 | 0.1449 | |
|
| 0.0771 | 7.7273 | 170 | 0.1344 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.11.1 |
|
- Transformers 4.43.1 |
|
- Pytorch 2.4.0+cu121 |
|
- Datasets 2.19.1 |
|
- Tokenizers 0.19.1 |