File size: 8,907 Bytes
c0f8a54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
""" PyTorch Wav2Vec2-Ebranchformer model."""

from typing import Optional

import torch
import torch.utils.checkpoint
from torch import nn
from transformers.activations import ACT2FN
from transformers.models.wav2vec2.modeling_wav2vec2 import (
    Wav2Vec2Config,
    Wav2Vec2ForCTC,
    Wav2Vec2ForPreTraining,
)
from transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer import (
    Wav2Vec2ConformerConfig,
    Wav2Vec2ConformerEncoder,
)
from transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer import (
    Wav2Vec2ConformerFeedForward as Wav2Vec2EBranchformerFeedForward,
)
from transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer import (
    Wav2Vec2ConformerModel,
)
from transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer import (
    Wav2Vec2ConformerSelfAttention as Wav2Vec2EBranchformerSelfAttention,
)
from transformers.utils import logging

logger = logging.get_logger(__name__)


class Wav2Vec2EBranchformerConfig(Wav2Vec2ConformerConfig, Wav2Vec2Config):
    """Config for EBranhformer model extending conformer."""

    model_type = "wav2vec2-ebranchformer"

    def __init__(
        self,
        ebranchformer_conv_dropout=0.1,
        csgu_activation="identity",
        csgu_kernel_size=31,
        csgu_use_linear_after_conv=False,
        merge_conv_kernel=31,
        use_macaron_ff=True,
        **kwargs,
    ):
        super().__init__(**kwargs)
        # EBranchformer related params
        self.csgu_kernel_size = csgu_kernel_size
        self.csgu_activation = csgu_activation
        self.csgu_conv_dropout = ebranchformer_conv_dropout
        self.csgu_use_linear_after_conv = csgu_use_linear_after_conv
        self.merge_conv_kernel = merge_conv_kernel
        self.use_macaron_ff = use_macaron_ff


class ConvolutionalSpatialGatingUnit(torch.nn.Module):
    """Convolutional Spatial Gating Unit (CSGU)."""

    def __init__(self, config: Wav2Vec2EBranchformerConfig):
        super().__init__()

        n_channels = config.intermediate_size // 2  # split input channels
        self.norm = torch.nn.LayerNorm(n_channels)
        self.conv = torch.nn.Conv1d(
            n_channels,
            n_channels,
            config.csgu_kernel_size,
            1,
            (config.csgu_kernel_size - 1) // 2,
            groups=n_channels,
        )
        if config.csgu_use_linear_after_conv:
            self.linear = torch.nn.Linear(n_channels, n_channels)
        else:
            self.linear = None

        if config.csgu_activation == "identity":
            self.act = torch.nn.Identity()
        else:
            self.act = ACT2FN[config.csgu_activation]

        self.dropout = torch.nn.Dropout(config.csgu_conv_dropout)

    def forward(self, hidden_states: torch.FloatTensor):
        """Forward method

        Args:
            hidden_states (torch.Tensor): (N, T, D)

        Returns:
            out (torch.Tensor): (N, T, D/2)
        """

        x_r, x_g = hidden_states.chunk(2, dim=-1)

        x_g = self.norm(x_g)  # (N, T, D/2)
        x_g = self.conv(x_g.transpose(1, 2)).transpose(1, 2)  # (N, T, D/2)
        if self.linear is not None:
            x_g = self.linear(x_g)

        x_g = self.act(x_g)
        hidden_states = x_r * x_g  # (N, T, D/2)
        hidden_states = self.dropout(hidden_states)
        return hidden_states


class ConvolutionalGatingMLP(torch.nn.Module):
    """Convolutional Gating MLP (cgMLP)."""

    def __init__(self, config: Wav2Vec2EBranchformerConfig):
        super().__init__()
        self.channel_proj1 = torch.nn.Sequential(
            torch.nn.Linear(config.hidden_size, config.intermediate_size), torch.nn.GELU()
        )
        self.csgu = ConvolutionalSpatialGatingUnit(config)
        self.channel_proj2 = torch.nn.Linear(config.intermediate_size // 2, config.hidden_size)

    def forward(self, hidden_states: torch.FloatTensor):
        hidden_states = self.channel_proj1(hidden_states)  # hidden_size -> intermediate_size
        hidden_states = self.csgu(hidden_states)  # intermediate_size -> intermediate_size/2
        hidden_states = self.channel_proj2(hidden_states)  # intermediate_size/2 -> hidden_size
        return hidden_states


class Wav2Vec2EBranchformerEncoderLayer(nn.Module):
    def __init__(self, config: Wav2Vec2EBranchformerConfig):
        super().__init__()
        embed_dim = config.hidden_size
        dropout = config.attention_dropout

        # Feed-forward 1
        if config.use_macaron_ff:
            self.ff1 = nn.Sequential(nn.LayerNorm(embed_dim), Wav2Vec2EBranchformerFeedForward(config))

        # Self-Attention
        self.self_attn_layer_norm = nn.LayerNorm(embed_dim)
        self.self_attn_dropout = torch.nn.Dropout(dropout)
        self.self_attn = Wav2Vec2EBranchformerSelfAttention(config)

        # cgMLP
        self.cgMLP = ConvolutionalGatingMLP(config)
        self.cgMLP_layer_norm = nn.LayerNorm(config.hidden_size)
        self.cgMLP_dropout = torch.nn.Dropout(dropout)

        # Merge
        self.final_dropout = torch.nn.Dropout(dropout)
        self.merge_proj = torch.nn.Linear(embed_dim + embed_dim, embed_dim)
        self.depthwise_conv_fusion = torch.nn.Conv1d(
            embed_dim + embed_dim,
            embed_dim + embed_dim,
            kernel_size=config.merge_conv_kernel,
            stride=1,
            padding=(config.merge_conv_kernel - 1) // 2,
            groups=embed_dim + embed_dim,
            bias=True,
        )
        self.final_layer_norm = nn.LayerNorm(embed_dim)

        # Feed-forward 2
        if config.use_macaron_ff:
            self.ff2 = nn.Sequential(nn.LayerNorm(embed_dim), Wav2Vec2EBranchformerFeedForward(config))

    def forward(
        self,
        hidden_states: torch.FloatTensor,
        attention_mask: Optional[torch.Tensor] = None,
        relative_position_embeddings: Optional[torch.Tensor] = None,
        output_attentions: bool = False,
    ):
        # 1. Optional ff1
        if self.ff1:
            residual = hidden_states
            hidden_states = residual + 0.5 * self.ff1(hidden_states)

        # 2. Split input to three branches
        residual = hidden_states
        global_branch = hidden_states
        local_branch = hidden_states

        # 3. Self-Attention branch
        global_branch = self.self_attn_layer_norm(global_branch)
        global_branch, attn_weigts = self.self_attn(
            hidden_states=global_branch,
            attention_mask=attention_mask,
            relative_position_embeddings=relative_position_embeddings,
            output_attentions=output_attentions,
        )
        global_branch = self.self_attn_dropout(global_branch)

        # 4. cgMLP Branch
        local_branch = self.cgMLP_layer_norm(local_branch)
        local_branch = self.cgMLP(local_branch)

        # 5. Merge operator
        # a, concat
        hidden_states = torch.cat([global_branch, local_branch], dim=-1)
        merge_residual = hidden_states
        # b, depth-wise conv mixing
        hidden_states = merge_residual + self.depthwise_conv_fusion(hidden_states.transpose(1, 2)).transpose(1, 2)
        # c, project back to original size and final dropout
        hidden_states = self.final_dropout(self.merge_proj(hidden_states))

        # 6. Add residual
        hidden_states = residual + hidden_states

        # 7. Optional ff2
        if self.ff2:
            residual = hidden_states
            hidden_states = residual + 0.5 * self.ff2(hidden_states)

        # 8. Final layer norm
        hidden_states = self.final_layer_norm(hidden_states)
        return hidden_states, attn_weigts


class Wav2Vec2EBranchformerEncoder(Wav2Vec2ConformerEncoder):
    def __init__(self, config: Wav2Vec2EBranchformerConfig):
        super().__init__(config)
        self.layers = nn.ModuleList(
            [Wav2Vec2EBranchformerEncoderLayer(config) for _ in range(config.num_hidden_layers)]
        )
        self.pos_conv_embed = None


class Wav2Vec2EBranchformerModel(Wav2Vec2ConformerModel):
    def __init__(self, config: Wav2Vec2EBranchformerConfig):
        super().__init__(config)
        self.encoder = Wav2Vec2EBranchformerEncoder(config)

        # Initialize weights and apply final processing
        self.post_init()


class Wav2Vec2EBranchformerForPreTraining(Wav2Vec2ForPreTraining):
    config_class = Wav2Vec2EBranchformerConfig
    base_model_prefix = "wav2vec2"

    def __init__(self, config: Wav2Vec2EBranchformerConfig):
        super().__init__(config)
        self.wav2vec2 = Wav2Vec2EBranchformerModel(config)
        self.post_init()


class Wav2Vec2EBranchformerForCTC(Wav2Vec2ForCTC):
    config_class = Wav2Vec2EBranchformerConfig
    base_model_prefix = "wav2vec2"

    def __init__(self, config: Wav2Vec2EBranchformerConfig):
        super().__init__(config)
        self.wav2vec2 = Wav2Vec2EBranchformerModel(config)
        self.post_init()