ED-small / README.md
Lakoc's picture
Update README.md
ff631e7 verified
---
language:
- en
datasets:
- mozilla-foundation/common_voice_13_0
- facebook/voxpopuli
- LIUM/tedlium
- librispeech_asr
- fisher_corpus
- WSJ-0
metrics:
- wer
pipeline_tag: automatic-speech-recognition
model-index:
- name: tbd
results:
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: LibriSpeech (clean)
type: librispeech_asr
config: clean
split: test
args:
language: en
metrics:
- type: wer
value: 3.4
name: Test WER
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: LibriSpeech (other)
type: librispeech_asr
config: other
split: test
args:
language: en
metrics:
- type: wer
value: 7.7
name: Test WER
- task:
type: Automatic Speech Recognition
name: automatic-speech-recognition
dataset:
name: tedlium-v3
type: LIUM/tedlium
config: release1
split: test
args:
language: en
metrics:
- type: wer
value: 5.5
name: Test WER
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: Vox Populi
type: facebook/voxpopuli
config: en
split: test
args:
language: en
metrics:
- type: wer
value: 8.3
name: Test WER
- task:
type: Automatic Speech Recognition
name: automatic-speech-recognition
dataset:
name: Mozilla Common Voice 13.0
type: mozilla-foundation/common_voice_13_0
config: en
split: test
args:
language: en
metrics:
- type: wer
value: 16.1
name: Test WER
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: FLEURS
type: google/fleurs
split: test
args:
language: en_us
metrics:
- type: wer
value: 9.9
name: Test WER
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: Switchboard
type: unk
split: eval2000
args:
language: en
metrics:
- type: wer
value: 12.5
name: Test WER
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: Wall Street Journal
type: unk
split: eval92
args:
language: en
metrics:
- type: wer
value: 2.4
name: Test WER
---
# DeCRED-base
This is a **39M encoder-decoder Ebranchformer model** trained on 6,000 hours of open-source normalised English data.
Architecture details, training hyperparameters, and a description of the proposed technique will be added soon.
*Disclaimer: The model currently hallucinates on segments containing silence only, as it was previously not trained on such data. The fix will be added soon.*
The model can be used with the [`pipeline`](https://huggingface.co/docs/transformers/main_classes/pipelines#transformers.AutomaticSpeechRecognitionPipeline)
class to transcribe audio files of arbitrary length.
```python
from transformers import pipeline
model_id = "BUT-FIT/ED-small"
pipe = pipeline("automatic-speech-recognition", model=model_id, feature_extractor=model_id, trust_remote_code=True)
# In newer versions of transformers (>4.31.0), there is a bug in the pipeline inference type.
# The warning can be ignored.
pipe.type = "seq2seq"
# Run beam search decoding with joint CTC-attention scorer
result_beam = pipe("audio.wav")
# Run greedy decoding without joint CTC-attention scorer
pipe.model.generation_config.ctc_weight = 0.0
pipe.model.generation_config.num_beams = 1
result_greedy = pipe("audio.wav")
```