Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,74 @@
|
|
1 |
-
---
|
2 |
-
license: apache-2.0
|
3 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
---
|
4 |
+
|
5 |
+
|
6 |
+
# Whisper Medium ATC full
|
7 |
+
|
8 |
+
This model is a fine-tuned [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on Czech and English air traffic communication recordings from Czech airport LKKU.
|
9 |
+
|
10 |
+
It was created as a product of bachelor's thesis at Faculty of Information Technology Brno University of Technology.
|
11 |
+
|
12 |
+
# Model description
|
13 |
+
|
14 |
+
|
15 |
+
- **Developed by:** Veronika Nevarilova ([@xnevar00](https://huggingface.co/xnevar00)), Igor Szoke ([@iszoke](https://huggingface.co/iszoke))
|
16 |
+
- **Shared by:** [BUT FIT](https://huggingface.co/BUT-FIT)
|
17 |
+
- **Model type:** Whisper
|
18 |
+
- **Languages:** Czech, English
|
19 |
+
- **License:** [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0)
|
20 |
+
- **Finetuned from model:** [openai/whisper-medium](https://huggingface.co/openai/whisper-medium)
|
21 |
+
|
22 |
+
|
23 |
+
# Usage
|
24 |
+
|
25 |
+
```
|
26 |
+
import torch
|
27 |
+
from transformers import pipeline
|
28 |
+
|
29 |
+
audio = "path/to/audio.xx"
|
30 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
31 |
+
|
32 |
+
transcribe = pipeline(task="automatic-speech-recognition", model="whisper_full", chunk_length_s=30, device=device)
|
33 |
+
transcribe.model.config.forced_decoder_ids = transcribe.tokenizer.get_decoder_prompt_ids(task="transcribe", language="czech")
|
34 |
+
print('Transcription:', transcribe(audio)["text"])
|
35 |
+
```
|
36 |
+
|
37 |
+
# Dataset
|
38 |
+
|
39 |
+
Training dataset was made of ~5 hours of air traffic communication recordings. Recordings were Czech and English (80:20) and sporadically Slovak.
|
40 |
+
|
41 |
+
# Output format
|
42 |
+
|
43 |
+
The model was learned to transcribe every recording word by word. Transcription format of a recording is as follows:
|
44 |
+
|
45 |
+
Recording: *Oscar Kilo Alpha Bravo Charlie dráha dva nula střední pro přistání volná vítr nula jedna nula stupňů pět uzlů*
|
46 |
+
|
47 |
+
Transcription: `Oscar Kilo Alpha Bravo Charlie dráha dva nula střední pro přistání volná vítr nula jedna nula stupňů pět uzlů`
|
48 |
+
|
49 |
+
**Note:** See also model [BUT-FIT/whisper-ATC-czech-short](https://huggingface.co/BUT-FIT/whisper-ATC-czech-short), which abbreviates callsigns and numbers.
|
50 |
+
|
51 |
+
|
52 |
+
# Results
|
53 |
+
|
54 |
+
The model reached total WER of 14,7 % on unseen Czech and English LKKU recordings. 19.6 % WER was achieved on a testset containing Czech air traffic recordings from other airports, LKPR and LKTB.
|
55 |
+
|
56 |
+
WER of callsings in LKKU recordings was evaluated to be 6.2 %, while on LKPR and LKTB dataset the model reached 3.6 %.
|
57 |
+
|
58 |
+
# Training hyperparameters
|
59 |
+
|
60 |
+
- **learning_rate:** 3e-5
|
61 |
+
- **per_device_train_batch_size:** 2
|
62 |
+
- **gradient_accumulation_steps:** 8
|
63 |
+
- **warmup_ratio:** 0.12
|
64 |
+
- **fp16:** True
|
65 |
+
- **gradient_checkpointing:** True
|
66 |
+
- **evaluation_strategy:** "epoch"
|
67 |
+
- **save_strategy:** "epoch"
|
68 |
+
- **load_best_model_at_end:** True
|
69 |
+
- **metric_for_best_model:** "wer"
|
70 |
+
- **num_train_epochs:** 45
|
71 |
+
|
72 |
+
# Contact
|
73 |
+
|
74 |
+
For further information don't hesitate to contact Veronika Nevarilova (**[xnevar00@stud.fit.vutbr.cz](xnevar00@stud.fit.vutbr.cz)**) or Igor Szoke (**[szoke@fit.vutbr.cz](szoke@fit.vutbr.cz)**).
|