|
Original model github address:[DenoisingDiffusionProbabilityModel-ddpm-](https://github.com/zoubohao/DenoisingDiffusionProbabilityModel-ddpm-) |
|
|
|
This is a simple attempt. I trained with CIFAR-10 dataset. |
|
|
|
## Usage |
|
|
|
```python |
|
# 生成图像有误...以下代码需修改!!! |
|
|
|
import torch |
|
from diffusers import DDPMPipeline, DDPMScheduler, UNet2DModel |
|
from PIL import Image |
|
import os |
|
import matplotlib.pyplot as plt |
|
|
|
# 设备选择 |
|
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") |
|
|
|
model_id = "BackTo2014/DDPM-test" |
|
|
|
def load_and_eval(checkpoint_path, output_dir="./generated_images"): |
|
# 加载 UNet 模型 |
|
unet = UNet2DModel.from_pretrained( |
|
model_id, # 替换为你的模型存储库名称 |
|
filename=checkpoint_path, # 使用传入的检查点文件名 |
|
ignore_mismatched_sizes=True, |
|
low_cpu_mem_usage=False, |
|
).to(device) |
|
|
|
# 确保 sample_size 是一个有效的尺寸信息 |
|
if unet.config.sample_size is None: |
|
# 假设样本尺寸为 32x32 或者根据你的需求设置 |
|
unet.config.sample_size = (32, 32) |
|
|
|
# 初始化调度器 |
|
scheduler = DDPMScheduler.from_config(model_id) # 替换为你的调度器存储库名称 |
|
|
|
# 创建管道 |
|
pipeline = DDPMPipeline(unet=unet, scheduler=scheduler) |
|
|
|
# 设置生成参数 |
|
num_images = 4 # 生成4张图像 |
|
generator = torch.manual_seed(0) # 固定随机种子 |
|
num_inference_steps = 999 # 推理步数 |
|
|
|
# 生成图像 |
|
images = [] |
|
for _ in range(num_images): |
|
image = pipeline(generator=generator, num_inference_steps=num_inference_steps).images[0] |
|
images.append(image) |
|
|
|
# 创建输出目录 |
|
if not os.path.exists(output_dir): |
|
os.makedirs(output_dir) |
|
|
|
# 保存图像 |
|
for i, img in enumerate(images): |
|
img.save(os.path.join(output_dir, f"generated_image_{i}.png")) |
|
|
|
# 使用 Matplotlib 显示图像 |
|
fig, axs = plt.subplots(1, len(images), figsize=(len(images) * 5, 5)) |
|
for ax, img in zip(axs.flatten(), images): |
|
ax.imshow(img) |
|
ax.axis('off') |
|
plt.show() |
|
|
|
if __name__ == "__main__": |
|
checkpoint_path = "ckpt_141_.pt" # 检查点文件名 |
|
load_and_eval(checkpoint_path) |
|
``` |