Original model github address:[DenoisingDiffusionProbabilityModel-ddpm-](https://github.com/zoubohao/DenoisingDiffusionProbabilityModel-ddpm-) This is a simple attempt. I trained with CIFAR-10 dataset. ## Usage ```python # 生成图像有误...以下代码需修改!!! import torch from diffusers import DDPMPipeline, DDPMScheduler, UNet2DModel from PIL import Image import os import matplotlib.pyplot as plt # 设备选择 device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") model_id = "BackTo2014/DDPM-test" def load_and_eval(checkpoint_path, output_dir="./generated_images"): # 加载 UNet 模型 unet = UNet2DModel.from_pretrained( model_id, # 替换为你的模型存储库名称 filename=checkpoint_path, # 使用传入的检查点文件名 ignore_mismatched_sizes=True, low_cpu_mem_usage=False, ).to(device) # 确保 sample_size 是一个有效的尺寸信息 if unet.config.sample_size is None: # 假设样本尺寸为 32x32 或者根据你的需求设置 unet.config.sample_size = (32, 32) # 初始化调度器 scheduler = DDPMScheduler.from_config(model_id) # 替换为你的调度器存储库名称 # 创建管道 pipeline = DDPMPipeline(unet=unet, scheduler=scheduler) # 设置生成参数 num_images = 4 # 生成4张图像 generator = torch.manual_seed(0) # 固定随机种子 num_inference_steps = 999 # 推理步数 # 生成图像 images = [] for _ in range(num_images): image = pipeline(generator=generator, num_inference_steps=num_inference_steps).images[0] images.append(image) # 创建输出目录 if not os.path.exists(output_dir): os.makedirs(output_dir) # 保存图像 for i, img in enumerate(images): img.save(os.path.join(output_dir, f"generated_image_{i}.png")) # 使用 Matplotlib 显示图像 fig, axs = plt.subplots(1, len(images), figsize=(len(images) * 5, 5)) for ax, img in zip(axs.flatten(), images): ax.imshow(img) ax.axis('off') plt.show() if __name__ == "__main__": checkpoint_path = "ckpt_141_.pt" # 检查点文件名 load_and_eval(checkpoint_path) ```