carlesonielfa's picture
Update to Sentis 2.1.1
05cf642 verified
raw
history blame
5.65 kB
using UnityEngine;
using Microsoft.ML.Tokenizers;
using Unity.Sentis;
using System.IO;
using System.Linq;
using System.Collections.Generic;
using System.Collections;
public class Phi3Claude : MonoBehaviour
{
Worker worker_model;
Worker worker_decoding;
LlamaTokenizer tokenizer;
List<int> tokens = new();
Tensor<int> inputTensor, attentionMaskTensor, positionIdsTensor;
Tensor<float> outputLogits;
Tensor<int> argMaxTensor;
int maxTokens = 100; // Maximum number of tokens to generate
List<int> eosTokens; // End of sequence tokens
private void Start()
{
var tokenizerModelPath = Path.Combine(Application.streamingAssetsPath, "Phi35/tokenizer.model");
var sentisModelPath = Path.Combine(Application.streamingAssetsPath, "Phi35/model_Uint8.sentis");
var configPath = Path.Combine(Application.streamingAssetsPath, "Phi35/generation_config.json");
var model = ModelLoader.Load(sentisModelPath);
var vocab_size = 32064;
// Create a model that does greedy decoding
FunctionalGraph graph = new FunctionalGraph();
FunctionalTensor logits = graph.AddInput<float>(new DynamicTensorShape(1,-1,vocab_size));
FunctionalTensor argMax = Functional.ArgMax(logits, 2, false);
Model greedyModel = graph.Compile(argMax);
worker_model = new Worker(model, BackendType.GPUCompute);
worker_decoding = new Worker(greedyModel, BackendType.GPUCompute);
// Manually set from added_tokens.json
Dictionary<string, int> specialTokens = new()
{
{ "<|assistant|>", 32001 },
{ "<|endoftext|>", 32000 },
{ "<|end|>", 32007 },
{ "<|placeholder1|>", 32002 },
{ "<|placeholder2|>", 32003 },
{ "<|placeholder3|>", 32004 },
{ "<|placeholder4|>", 32005 },
{ "<|placeholder5|>", 32008 },
{ "<|placeholder6|>", 32009 },
{ "<|system|>", 32006 },
{ "<|user|>", 32010 }
};
using (Stream tokenizerModelStream = new FileStream(tokenizerModelPath, FileMode.Open, FileAccess.Read))
{
tokenizer = LlamaTokenizer.Create(
tokenizerModelStream,
addBeginOfSentence: true,
addEndOfSentence: false,
specialTokens: specialTokens
);
}
// Manually set from generation_config.json
eosTokens = new(){32007, 32001, 32000};
Generate("What is the capital of France?");
}
public void Generate(string userPrompt, string systemPrompt = "You are a helpful assistant.")
{
string completePrompt = $@"<|system|>
{systemPrompt}<|end|>
<|user|>
{userPrompt}<|end|>
<|assistant|>";
Debug.Log("Complete prompt : " + completePrompt);
int[] inputIds = tokenizer.EncodeToIds(completePrompt).ToArray();
Debug.Log($"Tokenized input: [{string.Join(", ", inputIds)}]");
Debug.Log($"Decoded tokens: [{string.Join(", ", tokenizer.Decode(inputIds, true))}]");
tokens.Clear();
tokens.AddRange(inputIds);
StartCoroutine(GenerateSequence());
}
private IEnumerator GenerateSequence()
{
for (int i = 0; i < maxTokens; i++)
{
RefreshTensors(tokens.ToArray());
worker_model.SetInput("input_ids", inputTensor);
worker_model.SetInput("attention_mask", attentionMaskTensor);
worker_model.SetInput("position_ids", positionIdsTensor);
worker_model.Schedule(); // > 15ms (/!\ should be async)
outputLogits = worker_model.PeekOutput("logits") as Tensor<float>; // Async
outputLogits.ReadbackRequest(); // Async
yield return outputLogits.IsReadbackRequestDone(); // 236 ms
tokens.Add(ProcessLogits()); // > 200ms
int nextToken = tokens[tokens.Count - 1];
CleanupTensors();
if (eosTokens.Contains(nextToken))
break;
}
string generatedText = tokenizer.Decode(tokens.ToArray(), true); // 0 ms
Debug.Log($"Generated sequence: {generatedText}");
}
private int ProcessLogits()
{
worker_decoding.SetInput(0, outputLogits);
worker_decoding.Schedule();
argMaxTensor = worker_decoding.PeekOutput() as Tensor<int>;
argMaxTensor.ReadbackRequest();
argMaxTensor.IsReadbackRequestDone();
var argMaxTensorArray = argMaxTensor.DownloadToArray(); // TODO : investigate on why it's long to process
int nextToken = argMaxTensorArray[outputLogits.shape[1] - 1];
Debug.Log($"<color=orange>Next token: [ID = {nextToken}, STR = \"{tokenizer.Decode(new[] { nextToken }, true)}\"]</color>");
return nextToken;
}
private void RefreshTensors(int[] ids)
{
// Update input tensors with the full context
inputTensor = new Tensor<int>(new TensorShape(1, ids.Length), ids);
attentionMaskTensor = new Tensor<int>(new TensorShape(1, ids.Length), Enumerable.Repeat(1, ids.Length).ToArray());
positionIdsTensor = new Tensor<int>(new TensorShape(1, ids.Length), Enumerable.Range(0, ids.Length).ToArray());
}
private void CleanupTensors()
{
inputTensor?.Dispose();
attentionMaskTensor?.Dispose();
positionIdsTensor?.Dispose();
outputLogits?.Dispose();
argMaxTensor?.Dispose();
}
private void OnDestroy() {
CleanupTensors();
worker_model?.Dispose();
worker_decoding?.Dispose();
}
}