|
--- |
|
base_model: google/gemma-2b |
|
library_name: peft |
|
license: gemma |
|
metrics: |
|
- accuracy |
|
tags: |
|
- trl |
|
- reward-trainer |
|
- generated_from_trainer |
|
model-index: |
|
- name: reward_modeling |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/quirky_lats_at_mats/huggingface/runs/k92pr3b1) |
|
# reward_modeling |
|
|
|
This model is a fine-tuned version of [google/gemma-2b](https://huggingface.co/google/gemma-2b) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.4036 |
|
- Accuracy: 0.8058 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 3.0 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:------:|:----:|:---------------:|:--------:| |
|
| 0.9241 | 0.0787 | 5 | 0.6996 | 0.5678 | |
|
| 0.7708 | 0.1575 | 10 | 0.6284 | 0.6660 | |
|
| 0.7875 | 0.2362 | 15 | 0.5749 | 0.7244 | |
|
| 0.6575 | 0.3150 | 20 | 0.5360 | 0.7390 | |
|
| 0.6802 | 0.3937 | 25 | 0.5087 | 0.7432 | |
|
| 0.3982 | 0.4724 | 30 | 0.4890 | 0.7578 | |
|
| 0.4555 | 0.5512 | 35 | 0.4775 | 0.7599 | |
|
| 0.8838 | 0.6299 | 40 | 0.4683 | 0.7662 | |
|
| 0.4692 | 0.7087 | 45 | 0.4611 | 0.7662 | |
|
| 0.5455 | 0.7874 | 50 | 0.4531 | 0.7620 | |
|
| 0.5696 | 0.8661 | 55 | 0.4459 | 0.7662 | |
|
| 0.7453 | 0.9449 | 60 | 0.4414 | 0.7766 | |
|
| 0.5369 | 1.0236 | 65 | 0.4371 | 0.7829 | |
|
| 0.3994 | 1.1024 | 70 | 0.4334 | 0.7850 | |
|
| 0.4235 | 1.1811 | 75 | 0.4298 | 0.7912 | |
|
| 0.4811 | 1.2598 | 80 | 0.4266 | 0.7912 | |
|
| 0.5072 | 1.3386 | 85 | 0.4253 | 0.7912 | |
|
| 0.4405 | 1.4173 | 90 | 0.4228 | 0.7850 | |
|
| 0.5349 | 1.4961 | 95 | 0.4196 | 0.7871 | |
|
| 0.3342 | 1.5748 | 100 | 0.4170 | 0.7829 | |
|
| 0.5271 | 1.6535 | 105 | 0.4149 | 0.7933 | |
|
| 0.3463 | 1.7323 | 110 | 0.4136 | 0.7975 | |
|
| 0.4867 | 1.8110 | 115 | 0.4128 | 0.7996 | |
|
| 0.3221 | 1.8898 | 120 | 0.4125 | 0.7996 | |
|
| 0.3542 | 1.9685 | 125 | 0.4116 | 0.7996 | |
|
| 0.5465 | 2.0472 | 130 | 0.4107 | 0.7996 | |
|
| 0.3427 | 2.1260 | 135 | 0.4101 | 0.7996 | |
|
| 0.4787 | 2.2047 | 140 | 0.4087 | 0.8038 | |
|
| 0.4229 | 2.2835 | 145 | 0.4073 | 0.8017 | |
|
| 0.4514 | 2.3622 | 150 | 0.4063 | 0.8038 | |
|
| 0.5116 | 2.4409 | 155 | 0.4051 | 0.8038 | |
|
| 0.3234 | 2.5197 | 160 | 0.4045 | 0.8058 | |
|
| 0.3993 | 2.5984 | 165 | 0.4040 | 0.8058 | |
|
| 0.3264 | 2.6772 | 170 | 0.4037 | 0.8058 | |
|
| 0.3316 | 2.7559 | 175 | 0.4035 | 0.8038 | |
|
| 0.4855 | 2.8346 | 180 | 0.4035 | 0.8038 | |
|
| 0.536 | 2.9134 | 185 | 0.4036 | 0.8058 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.11.1 |
|
- Transformers 4.42.3 |
|
- Pytorch 2.3.1+cu121 |
|
- Datasets 2.20.0 |
|
- Tokenizers 0.19.1 |