update model card README.md
Browse files
README.md
CHANGED
@@ -1,9 +1,5 @@
|
|
1 |
---
|
2 |
-
language:
|
3 |
-
- tr
|
4 |
tags:
|
5 |
-
- automatic-speech-recognition
|
6 |
-
- common_voice
|
7 |
- generated_from_trainer
|
8 |
datasets:
|
9 |
- common_voice
|
@@ -17,11 +13,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
17 |
|
18 |
#
|
19 |
|
20 |
-
This model is a fine-tuned version of [./checkpoint-10500](https://huggingface.co/./checkpoint-10500) on the
|
21 |
It achieves the following results on the evaluation set:
|
22 |
-
- Loss: 0.
|
23 |
-
- Wer: 0.
|
24 |
-
- Cer: 0.
|
25 |
|
26 |
## Model description
|
27 |
|
@@ -46,34 +42,39 @@ The following hyperparameters were used during training:
|
|
46 |
- seed: 42
|
47 |
- optimizer: Adam with betas=(0.999,0.9999) and epsilon=1e-08
|
48 |
- lr_scheduler_type: linear
|
49 |
-
- num_epochs:
|
50 |
- mixed_precision_training: Native AMP
|
51 |
|
52 |
### Training results
|
53 |
|
54 |
-
| Training Loss | Epoch
|
55 |
-
|
56 |
-
| 1.0779 | 4.59
|
57 |
-
| 0.7573 | 9.17
|
58 |
-
| 0.8225 | 13.76
|
59 |
-
| 0.621 | 18.35
|
60 |
-
| 0.6362 | 22.94
|
61 |
-
| 0.624 | 27.52
|
62 |
-
| 0.4781 | 32.11
|
63 |
-
| 0.5685 | 36.7
|
64 |
-
| 0.4384 | 41.28
|
65 |
-
| 0.5509 | 45.87
|
66 |
-
| 0.3665 | 50.46
|
67 |
-
| 0.3914 | 55.05
|
68 |
-
| 0.2467 | 59.63
|
69 |
-
| 0.2576 | 64.22
|
70 |
-
| 0.2711 | 68.81
|
71 |
-
| 0.2626 | 73.39
|
72 |
-
| 0.1377 | 77.98
|
73 |
-
| 0.2005 | 82.57
|
74 |
-
| 0.1355 | 87.16
|
75 |
-
| 0.0431 | 91.74
|
76 |
-
| 0.0586 | 96.33
|
|
|
|
|
|
|
|
|
|
|
77 |
|
78 |
|
79 |
### Framework versions
|
|
|
1 |
---
|
|
|
|
|
2 |
tags:
|
|
|
|
|
3 |
- generated_from_trainer
|
4 |
datasets:
|
5 |
- common_voice
|
|
|
13 |
|
14 |
#
|
15 |
|
16 |
+
This model is a fine-tuned version of [./checkpoint-10500](https://huggingface.co/./checkpoint-10500) on the common_voice dataset.
|
17 |
It achieves the following results on the evaluation set:
|
18 |
+
- Loss: 0.7535
|
19 |
+
- Wer: 0.4651
|
20 |
+
- Cer: 0.1317
|
21 |
|
22 |
## Model description
|
23 |
|
|
|
42 |
- seed: 42
|
43 |
- optimizer: Adam with betas=(0.999,0.9999) and epsilon=1e-08
|
44 |
- lr_scheduler_type: linear
|
45 |
+
- num_epochs: 120.0
|
46 |
- mixed_precision_training: Native AMP
|
47 |
|
48 |
### Training results
|
49 |
|
50 |
+
| Training Loss | Epoch | Step | Cer | Validation Loss | Wer |
|
51 |
+
|:-------------:|:------:|:-----:|:------:|:---------------:|:------:|
|
52 |
+
| 1.0779 | 4.59 | 500 | 0.2354 | 0.8260 | 0.7395 |
|
53 |
+
| 0.7573 | 9.17 | 1000 | 0.2100 | 0.7544 | 0.6960 |
|
54 |
+
| 0.8225 | 13.76 | 1500 | 0.2021 | 0.6867 | 0.6672 |
|
55 |
+
| 0.621 | 18.35 | 2000 | 0.1874 | 0.6824 | 0.6209 |
|
56 |
+
| 0.6362 | 22.94 | 2500 | 0.1904 | 0.6712 | 0.6286 |
|
57 |
+
| 0.624 | 27.52 | 3000 | 0.1820 | 0.6940 | 0.6116 |
|
58 |
+
| 0.4781 | 32.11 | 3500 | 0.1735 | 0.6966 | 0.5989 |
|
59 |
+
| 0.5685 | 36.7 | 4000 | 0.1769 | 0.6742 | 0.5971 |
|
60 |
+
| 0.4384 | 41.28 | 4500 | 0.1767 | 0.6904 | 0.5999 |
|
61 |
+
| 0.5509 | 45.87 | 5000 | 0.1692 | 0.6734 | 0.5641 |
|
62 |
+
| 0.3665 | 50.46 | 5500 | 0.1680 | 0.7018 | 0.5662 |
|
63 |
+
| 0.3914 | 55.05 | 6000 | 0.1631 | 0.7121 | 0.5552 |
|
64 |
+
| 0.2467 | 59.63 | 6500 | 0.1563 | 0.6657 | 0.5374 |
|
65 |
+
| 0.2576 | 64.22 | 7000 | 0.1554 | 0.6920 | 0.5316 |
|
66 |
+
| 0.2711 | 68.81 | 7500 | 0.1495 | 0.6900 | 0.5176 |
|
67 |
+
| 0.2626 | 73.39 | 8000 | 0.1454 | 0.6843 | 0.5043 |
|
68 |
+
| 0.1377 | 77.98 | 8500 | 0.1470 | 0.7383 | 0.5101 |
|
69 |
+
| 0.2005 | 82.57 | 9000 | 0.1430 | 0.7228 | 0.5045 |
|
70 |
+
| 0.1355 | 87.16 | 9500 | 0.1375 | 0.7231 | 0.4869 |
|
71 |
+
| 0.0431 | 91.74 | 10000 | 0.1350 | 0.7397 | 0.4749 |
|
72 |
+
| 0.0586 | 96.33 | 10500 | 0.1339 | 0.7360 | 0.4754 |
|
73 |
+
| 0.0896 | 100.92 | 11000 | 0.7187 | 0.4885 | 0.1398 |
|
74 |
+
| 0.183 | 105.5 | 11500 | 0.7310 | 0.4838 | 0.1392 |
|
75 |
+
| 0.0963 | 110.09 | 12000 | 0.7643 | 0.4759 | 0.1362 |
|
76 |
+
| 0.0437 | 114.68 | 12500 | 0.7525 | 0.4641 | 0.1328 |
|
77 |
+
| 0.1122 | 119.27 | 13000 | 0.7535 | 0.4651 | 0.1317 |
|
78 |
|
79 |
|
80 |
### Framework versions
|