--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2.5-7B-Instruct tags: - generated_from_trainer datasets: - aaditya/mimicraw_clinicaltrial_train model-index: - name: out results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.6.0` ```yaml base_model: Qwen/Qwen2.5-7B-Instruct model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer trust_remote_code: true load_in_8bit: false load_in_4bit: true strict: false datasets: - path: aaditya/mimicraw_clinicaltrial_train type: alpaca val_set_size: 0.05 output_dir: ./out sequence_len: 4096 sample_packing: true pad_to_sequence_len: true adapter: qlora lora_r: 256 lora_alpha: 512 lora_dropout: 0.05 lora_target_linear: true lora_target_modules: - q_proj - k_proj - v_proj - o_proj - gate_proj - down_proj - up_proj wandb_project: qwen_mimicrawclinicaltrail wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 4 micro_batch_size: 6 num_epochs: 3 optimizer: adamw_torch lr_scheduler: cosine learning_rate: 2e-6 train_on_inputs: false group_by_length: false bf16: auto fp16: false tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 100 evals_per_epoch: 3 eval_table_size: saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: save_total_limit: 4 ```

# out This model is a fine-tuned version of [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct) on the aaditya/mimicraw_clinicaltrial_train dataset. It achieves the following results on the evaluation set: - Loss: 0.6060 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-06 - train_batch_size: 6 - eval_batch_size: 6 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 4 - total_train_batch_size: 24 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.8273 | 0.0008 | 1 | 0.8615 | | 0.6312 | 0.3335 | 400 | 0.6677 | | 0.6221 | 0.6671 | 800 | 0.6416 | | 0.1335 | 1.0 | 1200 | 0.6267 | | 0.6062 | 1.3327 | 1600 | 0.6176 | | 0.5861 | 1.6662 | 2000 | 0.6119 | | 0.6194 | 1.9998 | 2400 | 0.6084 | | 0.5953 | 2.3319 | 2800 | 0.6068 | | 0.6394 | 2.6654 | 3200 | 0.6060 | ### Framework versions - PEFT 0.14.0 - Transformers 4.48.1 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0