Initial commit
Browse files- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +106 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 525.86 +/- 96.75
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e35ea29dba23f1ee577048a7a2ec0ab8d3421a7a3d7025bfcda3fd492133112e
|
3 |
+
size 129304
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0a2
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fc03e97bb50>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc03e97bbe0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc03e97bc70>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc03e97bd00>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fc03e97bd90>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fc03e97be20>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fc03e97beb0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc03e97bf40>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fc03e984040>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc03e9840d0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc03e984160>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc03e9841f0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fc03ee49d40>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
28
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
8
|
54 |
+
],
|
55 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
56 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
57 |
+
"bounded_below": "[ True True True True True True True True]",
|
58 |
+
"bounded_above": "[ True True True True True True True True]",
|
59 |
+
"_np_random": null
|
60 |
+
},
|
61 |
+
"n_envs": 4,
|
62 |
+
"num_timesteps": 2000000,
|
63 |
+
"_total_timesteps": 2000000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": null,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1675618175277668100,
|
68 |
+
"learning_rate": 0.00096,
|
69 |
+
"tensorboard_log": null,
|
70 |
+
"lr_schedule": {
|
71 |
+
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWV8QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXy9ob21lL2FjaGFwaW4vLmNvbmRhL2VudnMvSHVnZ2luL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxfL2hvbWUvYWNoYXBpbi8uY29uZGEvZW52cy9IdWdnaW4vbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
73 |
+
},
|
74 |
+
"_last_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAMorVkC3+Zg/34aGP8uABb/7aHQ/z+OAPbTy1T4+2CQ+hne+vsGw6znKmRXAHyK7vALlKr/q8ZC7PW8bQFFYAT1w8ac+g4OQO5cjN0CYCKk8V6gHvxCtBrxcGwfAkkaOvHDJAcBicCDAxozFv+nAj78YREs/JVB+vybzBb/q0iE/SsiRv0tCrr9Yu6e/cCu/vpUMCz+we9q/fFcwv5NR5D6WhMk74Tvhv6I0Mj/jwgI+ydbvPOssY796WMu/a0nDPz7iSz9A0tA+mz76vuPitj+4efw+Vz3MPsaMxb/pwI+/v/6XvRq2Ab/L49w+DRYvvyNsS7+uuF7AaCtbP8GVS7+cejA/dODGv0dxWj9GR6HA7gofP2NfwL+kQ9g+e7g5P8+qar/g1l0/fMJ6P3AosT32l/i/Q1aAPsyHHL7YO8I/uHn8PmJwIMA83yU/FvJjP68giL8fEk9AQL2evwiMAD91r/++2WsBv1adbT/8r5m9CsRmPXXzR75MnbY9sC+7vp7inT/tVdq8h3ayPqyoOz+hHk+/MN2Wvxd4fT8oqvs8XaWYv1UvD8BQ1ku/gmGdvLh5/D5XPcw+PN8lPxbyYz+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
+
},
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACZ0LG2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA+M8CPgAAAAAZ5dq/AAAAAMX8ujwAAAAA9/8AQAAAAAB6tYK8AAAAAH4FAUAAAAAA5PXhPQAAAABFj/K/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2WTLNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgBPZDb4AAAAAcQztvwAAAAAdvLE9AAAAANAd9z8AAAAA0otDvQAAAADHBP8/AAAAAHHboL0AAAAATQr6vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJfiSbYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBdS9Y9AAAAAL7X6r8AAAAAqHz2vQAAAADNJvM/AAAAAO30ojwAAAAAfLD5PwAAAAAUaI29AAAAABQk7L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJJgw0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAtv61vQAAAABAT9u/AAAAALtkJD0AAAAAIzHdPwAAAAD9v4W8AAAAAFtY7z8AAAAA4MzePQAAAADuk+i/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJI674tYjjeMAWyUTegDjAF0lEdAqUd77wazeHV9lChoBkdAkbLbZnL7oGgHTegDaAhHQKlL/UR3/xV1fZQoaAZHQJJEFayKNyZoB03oA2gIR0CpT4cyWRigdX2UKGgGR8BXu5ha1TisaAdN6ANoCEdAqVAf+S8rZ3V9lChoBkdAjEguJtSAH2gHTegDaAhHQKlYC0iQkop1fZQoaAZHQJLFgPSUkfNoB03oA2gIR0CpXMv91loUdX2UKGgGR0CSBtCMxXXAaAdN6ANoCEdAqWCNjLB9C3V9lChoBkdAbPtJCjUNKGgHTegDaAhHQKlhCKTB68h1fZQoaAZHQJNGI1UEPlNoB03oA2gIR0CpZtUyHmA9dX2UKGgGR0CRQQNKh+OPaAdN6ANoCEdAqWu2N96Tn3V9lChoBkdAjuJ++23KCGgHTegDaAhHQKlucE384xV1fZQoaAZHQJIJUY0l7dBoB03oA2gIR0Cpbs5Oi35OdX2UKGgGR0CNsFJ3gUDdaAdN6ANoCEdAqXSJWvKU3XV9lChoBkdAkXTgWWQfZGgHTegDaAhHQKl4+DSPU8V1fZQoaAZHQIsdXz4DcM5oB03oA2gIR0Cpe9BBRhttdX2UKGgGR0CEwAYGdI5HaAdN6ANoCEdAqXxCVbA1vXV9lChoBkdAkOasl9jPOmgHTegDaAhHQKmBy8/2TPl1fZQoaAZHQIWwh/LDAJtoB03oA2gIR0Cphg4nv2GqdX2UKGgGR0CMXNkq+ajOaAdN6ANoCEdAqYjnBk7OmnV9lChoBkdAjBgkgW8AaWgHTegDaAhHQKmJUyi22G91fZQoaAZHQIUDE8s+V1RoB03oA2gIR0CpjrWCuloEdX2UKGgGR0CP7MEal1r7aAdN6ANoCEdAqZMnL/0dzXV9lChoBkdAekm/MW43FWgHTfABaAhHQKmVLPSlWOp1fZQoaAZHQI+D7IYFaB9oB03oA2gIR0CplhD+aScLdX2UKGgGR0CS5LMLWqcWaAdN6ANoCEdAqZZ5W912aHV9lChoBkdAkFAnZ5AyEmgHTegDaAhHQKmgCkUsWft1fZQoaAZHQIyYxisny/doB03oA2gIR0Cpof1oQFs6dX2UKGgGR0CPIAIFeOXFaAdN6ANoCEdAqaLipFTef3V9lChoBkdAjz08NH6MzmgHTegDaAhHQKmjRKgZjx11fZQoaAZHQJEvE1rIo3JoB03oA2gIR0CprPz8YQ8PdX2UKGgGR0CRoqOLzf78aAdN6ANoCEdAqa79AZ88cXV9lChoBkdAkqjyH6/IsGgHTegDaAhHQKmv0ngpBop1fZQoaAZHQJLwgFpwjt5oB03oA2gIR0CpsDpgTh5xdX2UKGgGR0CKj/Uy57PZaAdN6ANoCEdAqbtYz1schnV9lChoBkdAju55wGW2PWgHTegDaAhHQKm9wIk7fYV1fZQoaAZHQJIvKR9w3o9oB03oA2gIR0CpvscSoOx0dX2UKGgGR0CUfhF/hESeaAdN6ANoCEdAqb9CKxcE/3V9lChoBkdAkq+0Pxx1gmgHTegDaAhHQKnJ/O3UhFF1fZQoaAZHQJMnup5u63BoB03oA2gIR0Cpy/2ll9SddX2UKGgGR0CSYJeOXE61aAdN6ANoCEdAqczRvgm7a3V9lChoBkdAhCK0d7v5QGgHTegDaAhHQKnNMQkona51fZQoaAZHQI/bnF72L51oB03oA2gIR0Cp2Xeso2GZdX2UKGgGR0COonPJq7AdaAdN6ANoCEdAqd2iFZgXuXV9lChoBkdAkSlqPKdQPGgHTegDaAhHQKnfBkCFK051fZQoaAZHQI3GtEsrd31oB03oA2gIR0Cp35xBmf5DdX2UKGgGR0CSfIHoouwpaAdN6ANoCEdAqe4tKGtZFHV9lChoBkdAkEQESVW0Z2gHTegDaAhHQKnw65byH211fZQoaAZHQJHaYsNDtw9oB03oA2gIR0Cp8jFdkauPdX2UKGgGR0CK+jHuqm0maAdN6ANoCEdAqfKyDK5kLHV9lChoBkdAgwqV32VVxWgHTegDaAhHQKn+tXqZ+hJ1fZQoaAZHQIu5y8BdUsFoB03oA2gIR0CqAZBLGrCFdX2UKGgGR0CQH+H+qBEsaAdN6ANoCEdAqgKp9XtBwHV9lChoBkdAjKnUO/cnE2gHTegDaAhHQKoDGe5nUUh1fZQoaAZHQJCidGOMl1NoB03oA2gIR0CqDswRoRI0dX2UKGgGR0CUq+vvjOs1aAdN6ANoCEdAqhEkfHPu5XV9lChoBkdAkdtz1XeWOmgHTegDaAhHQKoSBmDlHSZ1fZQoaAZHQJJRCF10T11oB03oA2gIR0CqEnzDn/1hdX2UKGgGR0CNstyS3b22aAdN6ANoCEdAqh4yoMrmQ3V9lChoBkdAjD1J79hqkGgHTegDaAhHQKogReokzGh1fZQoaAZHQJHTRMbm2b5oB03oA2gIR0CqIR/KZDzAdX2UKGgGR0CK4ufNiYsvaAdN6ANoCEdAqiF/1ct5EHV9lChoBkdAjEmpAlfJFWgHTegDaAhHQKosFZs9B8h1fZQoaAZHQIvpWJSBK+VoB03oA2gIR0CqLh4JNTLodX2UKGgGR0B3oWzJIUaiaAdN6ANoCEdAqi8MyFfzBnV9lChoBkdAjnPmQ0XP7mgHTegDaAhHQKoviOTaCcx1fZQoaAZHQIWlgj0L+gloB03oA2gIR0CqO3deyAx0dX2UKGgGR0CK0oIRAbADaAdN6ANoCEdAqj2b8YQ8OnV9lChoBkdAj0s7yYoiLWgHTegDaAhHQKo+dHuJDVp1fZQoaAZHQHQcOAmReTpoB03oA2gIR0CqPt/jjrAydX2UKGgGR0CJ5HSde6ZqaAdN6ANoCEdAqkjiHh0heXV9lChoBkdAgQXpZGKAKGgHTegDaAhHQKpLFpfQa751fZQoaAZHQI5pxuO0b99oB03oA2gIR0CqTDALRa5gdX2UKGgGR0CNaiBGQSzxaAdN6ANoCEdAqkyTG1hLG3V9lChoBkdAkPKo3rD632gHTegDaAhHQKpZJqbBoEl1fZQoaAZHQISdHl+3H7xoB03oA2gIR0CqW/LdN34cdX2UKGgGR0CP9y1FYuCgaAdN6ANoCEdAql0er2g3+HV9lChoBkdAdSg0knkT6GgHTegDaAhHQKpdqE12q1h1fZQoaAZHQJFtVliBoVVoB03oA2gIR0CqaLI55qubdX2UKGgGR0COioOmzjWDaAdN6ANoCEdAqmsWHck+o3V9lChoBkdAkIwdB4Uvf2gHTegDaAhHQKpsCq1gH/t1fZQoaAZHQIMzFSGahHtoB03oA2gIR0CqbHFcyFfzdX2UKGgGR0CQXyokRjBmaAdN6ANoCEdAqneW1OTJQ3V9lChoBkdAjfkSn1nM+2gHTegDaAhHQKp595kbxVh1fZQoaAZHQJIAG5jH4oJoB03oA2gIR0CqevgEt/WldX2UKGgGR0CJ3nPgNwzdaAdN6ANoCEdAqntshHLA6HV9lChoBkdAb/DlzU7SzGgHTegDaAhHQKqFT6KLsKN1fZQoaAZHQJGqcmzByjpoB03oA2gIR0Cqh0Vr6+FldX2UKGgGR0B0vLh3qzJIaAdN6ANoCEdAqog/+IdlunV9lChoBkdAiRePRzBAOmgHTegDaAhHQKqI50nPVut1fZQoaAZHQIWaBCv5gw5oB03oA2gIR0CqkysuFpPAdX2UKGgGR0CLEcY/FBIGaAdN6ANoCEdAqpUZBw++unV9lChoBkdAiMokN4JNTWgHTegDaAhHQKqV6sFMZgp1fZQoaAZHQI/CiFGoaUBoB03oA2gIR0Cqll9ZzPrwdX2UKGgGR0COUxNbC79RaAdN6ANoCEdAqqAeDjBEa3V9lChoBkdAjqeVQAMlTmgHTegDaAhHQKqiG+fywwF1fZQoaAZHQI81BhKDkENoB03oA2gIR0CqowwHzH0cdX2UKGgGR0CGASRjBl+WaAdN6ANoCEdAqqN0FdLQHHV9lChoBkdAfR/rleWv82gHTegDaAhHQKqudKoybhF1fZQoaAZHQHyJ4GMXJo1oB03oA2gIR0CqsMjABT4tdX2UKGgGR0CFGYb961LKaAdN6ANoCEdAqrGpujynUHVlLg=="
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 62500,
|
99 |
+
"n_steps": 8,
|
100 |
+
"gamma": 0.99,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0.0,
|
103 |
+
"vf_coef": 0.4,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:329891d413dbe2ac140fcf002abafe7cda5c795a184abeca39736d55fed684de
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:60d59fea37cb93a20d567a084f6a9061aa9de0a29f53fe85e3191ed391ccae45
|
3 |
+
size 56894
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.16.3-microsoft-standard-WSL2-x86_64-with-glibc2.35 # 1 SMP Fri Apr 2 22:23:49 UTC 2021
|
2 |
+
- Python: 3.10.9
|
3 |
+
- Stable-Baselines3: 1.8.0a2
|
4 |
+
- PyTorch: 1.13.1+cu117
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fc03e97bb50>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc03e97bbe0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc03e97bc70>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc03e97bd00>", "_build": "<function ActorCriticPolicy._build at 0x7fc03e97bd90>", "forward": "<function ActorCriticPolicy.forward at 0x7fc03e97be20>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fc03e97beb0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc03e97bf40>", "_predict": "<function ActorCriticPolicy._predict at 0x7fc03e984040>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc03e9840d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc03e984160>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc03e9841f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fc03ee49d40>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675618175277668100, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV8QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXy9ob21lL2FjaGFwaW4vLmNvbmRhL2VudnMvSHVnZ2luL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxfL2hvbWUvYWNoYXBpbi8uY29uZGEvZW52cy9IdWdnaW4vbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAMorVkC3+Zg/34aGP8uABb/7aHQ/z+OAPbTy1T4+2CQ+hne+vsGw6znKmRXAHyK7vALlKr/q8ZC7PW8bQFFYAT1w8ac+g4OQO5cjN0CYCKk8V6gHvxCtBrxcGwfAkkaOvHDJAcBicCDAxozFv+nAj78YREs/JVB+vybzBb/q0iE/SsiRv0tCrr9Yu6e/cCu/vpUMCz+we9q/fFcwv5NR5D6WhMk74Tvhv6I0Mj/jwgI+ydbvPOssY796WMu/a0nDPz7iSz9A0tA+mz76vuPitj+4efw+Vz3MPsaMxb/pwI+/v/6XvRq2Ab/L49w+DRYvvyNsS7+uuF7AaCtbP8GVS7+cejA/dODGv0dxWj9GR6HA7gofP2NfwL+kQ9g+e7g5P8+qar/g1l0/fMJ6P3AosT32l/i/Q1aAPsyHHL7YO8I/uHn8PmJwIMA83yU/FvJjP68giL8fEk9AQL2evwiMAD91r/++2WsBv1adbT/8r5m9CsRmPXXzR75MnbY9sC+7vp7inT/tVdq8h3ayPqyoOz+hHk+/MN2Wvxd4fT8oqvs8XaWYv1UvD8BQ1ku/gmGdvLh5/D5XPcw+PN8lPxbyYz+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACZ0LG2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA+M8CPgAAAAAZ5dq/AAAAAMX8ujwAAAAA9/8AQAAAAAB6tYK8AAAAAH4FAUAAAAAA5PXhPQAAAABFj/K/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2WTLNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgBPZDb4AAAAAcQztvwAAAAAdvLE9AAAAANAd9z8AAAAA0otDvQAAAADHBP8/AAAAAHHboL0AAAAATQr6vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJfiSbYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBdS9Y9AAAAAL7X6r8AAAAAqHz2vQAAAADNJvM/AAAAAO30ojwAAAAAfLD5PwAAAAAUaI29AAAAABQk7L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJJgw0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAtv61vQAAAABAT9u/AAAAALtkJD0AAAAAIzHdPwAAAAD9v4W8AAAAAFtY7z8AAAAA4MzePQAAAADuk+i/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJI674tYjjeMAWyUTegDjAF0lEdAqUd77wazeHV9lChoBkdAkbLbZnL7oGgHTegDaAhHQKlL/UR3/xV1fZQoaAZHQJJEFayKNyZoB03oA2gIR0CpT4cyWRigdX2UKGgGR8BXu5ha1TisaAdN6ANoCEdAqVAf+S8rZ3V9lChoBkdAjEguJtSAH2gHTegDaAhHQKlYC0iQkop1fZQoaAZHQJLFgPSUkfNoB03oA2gIR0CpXMv91loUdX2UKGgGR0CSBtCMxXXAaAdN6ANoCEdAqWCNjLB9C3V9lChoBkdAbPtJCjUNKGgHTegDaAhHQKlhCKTB68h1fZQoaAZHQJNGI1UEPlNoB03oA2gIR0CpZtUyHmA9dX2UKGgGR0CRQQNKh+OPaAdN6ANoCEdAqWu2N96Tn3V9lChoBkdAjuJ++23KCGgHTegDaAhHQKlucE384xV1fZQoaAZHQJIJUY0l7dBoB03oA2gIR0Cpbs5Oi35OdX2UKGgGR0CNsFJ3gUDdaAdN6ANoCEdAqXSJWvKU3XV9lChoBkdAkXTgWWQfZGgHTegDaAhHQKl4+DSPU8V1fZQoaAZHQIsdXz4DcM5oB03oA2gIR0Cpe9BBRhttdX2UKGgGR0CEwAYGdI5HaAdN6ANoCEdAqXxCVbA1vXV9lChoBkdAkOasl9jPOmgHTegDaAhHQKmBy8/2TPl1fZQoaAZHQIWwh/LDAJtoB03oA2gIR0Cphg4nv2GqdX2UKGgGR0CMXNkq+ajOaAdN6ANoCEdAqYjnBk7OmnV9lChoBkdAjBgkgW8AaWgHTegDaAhHQKmJUyi22G91fZQoaAZHQIUDE8s+V1RoB03oA2gIR0CpjrWCuloEdX2UKGgGR0CP7MEal1r7aAdN6ANoCEdAqZMnL/0dzXV9lChoBkdAekm/MW43FWgHTfABaAhHQKmVLPSlWOp1fZQoaAZHQI+D7IYFaB9oB03oA2gIR0CplhD+aScLdX2UKGgGR0CS5LMLWqcWaAdN6ANoCEdAqZZ5W912aHV9lChoBkdAkFAnZ5AyEmgHTegDaAhHQKmgCkUsWft1fZQoaAZHQIyYxisny/doB03oA2gIR0Cpof1oQFs6dX2UKGgGR0CPIAIFeOXFaAdN6ANoCEdAqaLipFTef3V9lChoBkdAjz08NH6MzmgHTegDaAhHQKmjRKgZjx11fZQoaAZHQJEvE1rIo3JoB03oA2gIR0CprPz8YQ8PdX2UKGgGR0CRoqOLzf78aAdN6ANoCEdAqa79AZ88cXV9lChoBkdAkqjyH6/IsGgHTegDaAhHQKmv0ngpBop1fZQoaAZHQJLwgFpwjt5oB03oA2gIR0CpsDpgTh5xdX2UKGgGR0CKj/Uy57PZaAdN6ANoCEdAqbtYz1schnV9lChoBkdAju55wGW2PWgHTegDaAhHQKm9wIk7fYV1fZQoaAZHQJIvKR9w3o9oB03oA2gIR0CpvscSoOx0dX2UKGgGR0CUfhF/hESeaAdN6ANoCEdAqb9CKxcE/3V9lChoBkdAkq+0Pxx1gmgHTegDaAhHQKnJ/O3UhFF1fZQoaAZHQJMnup5u63BoB03oA2gIR0Cpy/2ll9SddX2UKGgGR0CSYJeOXE61aAdN6ANoCEdAqczRvgm7a3V9lChoBkdAhCK0d7v5QGgHTegDaAhHQKnNMQkona51fZQoaAZHQI/bnF72L51oB03oA2gIR0Cp2Xeso2GZdX2UKGgGR0COonPJq7AdaAdN6ANoCEdAqd2iFZgXuXV9lChoBkdAkSlqPKdQPGgHTegDaAhHQKnfBkCFK051fZQoaAZHQI3GtEsrd31oB03oA2gIR0Cp35xBmf5DdX2UKGgGR0CSfIHoouwpaAdN6ANoCEdAqe4tKGtZFHV9lChoBkdAkEQESVW0Z2gHTegDaAhHQKnw65byH211fZQoaAZHQJHaYsNDtw9oB03oA2gIR0Cp8jFdkauPdX2UKGgGR0CK+jHuqm0maAdN6ANoCEdAqfKyDK5kLHV9lChoBkdAgwqV32VVxWgHTegDaAhHQKn+tXqZ+hJ1fZQoaAZHQIu5y8BdUsFoB03oA2gIR0CqAZBLGrCFdX2UKGgGR0CQH+H+qBEsaAdN6ANoCEdAqgKp9XtBwHV9lChoBkdAjKnUO/cnE2gHTegDaAhHQKoDGe5nUUh1fZQoaAZHQJCidGOMl1NoB03oA2gIR0CqDswRoRI0dX2UKGgGR0CUq+vvjOs1aAdN6ANoCEdAqhEkfHPu5XV9lChoBkdAkdtz1XeWOmgHTegDaAhHQKoSBmDlHSZ1fZQoaAZHQJJRCF10T11oB03oA2gIR0CqEnzDn/1hdX2UKGgGR0CNstyS3b22aAdN6ANoCEdAqh4yoMrmQ3V9lChoBkdAjD1J79hqkGgHTegDaAhHQKogReokzGh1fZQoaAZHQJHTRMbm2b5oB03oA2gIR0CqIR/KZDzAdX2UKGgGR0CK4ufNiYsvaAdN6ANoCEdAqiF/1ct5EHV9lChoBkdAjEmpAlfJFWgHTegDaAhHQKosFZs9B8h1fZQoaAZHQIvpWJSBK+VoB03oA2gIR0CqLh4JNTLodX2UKGgGR0B3oWzJIUaiaAdN6ANoCEdAqi8MyFfzBnV9lChoBkdAjnPmQ0XP7mgHTegDaAhHQKoviOTaCcx1fZQoaAZHQIWlgj0L+gloB03oA2gIR0CqO3deyAx0dX2UKGgGR0CK0oIRAbADaAdN6ANoCEdAqj2b8YQ8OnV9lChoBkdAj0s7yYoiLWgHTegDaAhHQKo+dHuJDVp1fZQoaAZHQHQcOAmReTpoB03oA2gIR0CqPt/jjrAydX2UKGgGR0CJ5HSde6ZqaAdN6ANoCEdAqkjiHh0heXV9lChoBkdAgQXpZGKAKGgHTegDaAhHQKpLFpfQa751fZQoaAZHQI5pxuO0b99oB03oA2gIR0CqTDALRa5gdX2UKGgGR0CNaiBGQSzxaAdN6ANoCEdAqkyTG1hLG3V9lChoBkdAkPKo3rD632gHTegDaAhHQKpZJqbBoEl1fZQoaAZHQISdHl+3H7xoB03oA2gIR0CqW/LdN34cdX2UKGgGR0CP9y1FYuCgaAdN6ANoCEdAql0er2g3+HV9lChoBkdAdSg0knkT6GgHTegDaAhHQKpdqE12q1h1fZQoaAZHQJFtVliBoVVoB03oA2gIR0CqaLI55qubdX2UKGgGR0COioOmzjWDaAdN6ANoCEdAqmsWHck+o3V9lChoBkdAkIwdB4Uvf2gHTegDaAhHQKpsCq1gH/t1fZQoaAZHQIMzFSGahHtoB03oA2gIR0CqbHFcyFfzdX2UKGgGR0CQXyokRjBmaAdN6ANoCEdAqneW1OTJQ3V9lChoBkdAjfkSn1nM+2gHTegDaAhHQKp595kbxVh1fZQoaAZHQJIAG5jH4oJoB03oA2gIR0CqevgEt/WldX2UKGgGR0CJ3nPgNwzdaAdN6ANoCEdAqntshHLA6HV9lChoBkdAb/DlzU7SzGgHTegDaAhHQKqFT6KLsKN1fZQoaAZHQJGqcmzByjpoB03oA2gIR0Cqh0Vr6+FldX2UKGgGR0B0vLh3qzJIaAdN6ANoCEdAqog/+IdlunV9lChoBkdAiRePRzBAOmgHTegDaAhHQKqI50nPVut1fZQoaAZHQIWaBCv5gw5oB03oA2gIR0CqkysuFpPAdX2UKGgGR0CLEcY/FBIGaAdN6ANoCEdAqpUZBw++unV9lChoBkdAiMokN4JNTWgHTegDaAhHQKqV6sFMZgp1fZQoaAZHQI/CiFGoaUBoB03oA2gIR0Cqll9ZzPrwdX2UKGgGR0COUxNbC79RaAdN6ANoCEdAqqAeDjBEa3V9lChoBkdAjqeVQAMlTmgHTegDaAhHQKqiG+fywwF1fZQoaAZHQI81BhKDkENoB03oA2gIR0CqowwHzH0cdX2UKGgGR0CGASRjBl+WaAdN6ANoCEdAqqN0FdLQHHV9lChoBkdAfR/rleWv82gHTegDaAhHQKqudKoybhF1fZQoaAZHQHyJ4GMXJo1oB03oA2gIR0CqsMjABT4tdX2UKGgGR0CFGYb961LKaAdN6ANoCEdAqrGpujynUHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.16.3-microsoft-standard-WSL2-x86_64-with-glibc2.35 # 1 SMP Fri Apr 2 22:23:49 UTC 2021", "Python": "3.10.9", "Stable-Baselines3": "1.8.0a2", "PyTorch": "1.13.1+cu117", "GPU Enabled": "True", "Numpy": "1.23.5", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (469 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 525.8610151882233, "std_reward": 96.75393942987185, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-05T19:23:16.387918"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:adfb9400dc31e3871bf9df03f66b2a61b559a26b62d356d6718def7729654b59
|
3 |
+
size 2129
|