Beegbrain commited on
Commit
cd94a3c
·
1 Parent(s): 3169a73

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 525.86 +/- 96.75
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e35ea29dba23f1ee577048a7a2ec0ab8d3421a7a3d7025bfcda3fd492133112e
3
+ size 129304
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.8.0a2
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fc03e97bb50>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc03e97bbe0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc03e97bc70>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc03e97bd00>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fc03e97bd90>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fc03e97be20>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fc03e97beb0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc03e97bf40>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fc03e984040>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc03e9840d0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc03e984160>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc03e9841f0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7fc03ee49d40>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1675618175277668100,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWV8QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXy9ob21lL2FjaGFwaW4vLmNvbmRhL2VudnMvSHVnZ2luL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxfL2hvbWUvYWNoYXBpbi8uY29uZGEvZW52cy9IdWdnaW4vbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAMorVkC3+Zg/34aGP8uABb/7aHQ/z+OAPbTy1T4+2CQ+hne+vsGw6znKmRXAHyK7vALlKr/q8ZC7PW8bQFFYAT1w8ac+g4OQO5cjN0CYCKk8V6gHvxCtBrxcGwfAkkaOvHDJAcBicCDAxozFv+nAj78YREs/JVB+vybzBb/q0iE/SsiRv0tCrr9Yu6e/cCu/vpUMCz+we9q/fFcwv5NR5D6WhMk74Tvhv6I0Mj/jwgI+ydbvPOssY796WMu/a0nDPz7iSz9A0tA+mz76vuPitj+4efw+Vz3MPsaMxb/pwI+/v/6XvRq2Ab/L49w+DRYvvyNsS7+uuF7AaCtbP8GVS7+cejA/dODGv0dxWj9GR6HA7gofP2NfwL+kQ9g+e7g5P8+qar/g1l0/fMJ6P3AosT32l/i/Q1aAPsyHHL7YO8I/uHn8PmJwIMA83yU/FvJjP68giL8fEk9AQL2evwiMAD91r/++2WsBv1adbT/8r5m9CsRmPXXzR75MnbY9sC+7vp7inT/tVdq8h3ayPqyoOz+hHk+/MN2Wvxd4fT8oqvs8XaWYv1UvD8BQ1ku/gmGdvLh5/D5XPcw+PN8lPxbyYz+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACZ0LG2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA+M8CPgAAAAAZ5dq/AAAAAMX8ujwAAAAA9/8AQAAAAAB6tYK8AAAAAH4FAUAAAAAA5PXhPQAAAABFj/K/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2WTLNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgBPZDb4AAAAAcQztvwAAAAAdvLE9AAAAANAd9z8AAAAA0otDvQAAAADHBP8/AAAAAHHboL0AAAAATQr6vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJfiSbYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBdS9Y9AAAAAL7X6r8AAAAAqHz2vQAAAADNJvM/AAAAAO30ojwAAAAAfLD5PwAAAAAUaI29AAAAABQk7L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJJgw0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAtv61vQAAAABAT9u/AAAAALtkJD0AAAAAIzHdPwAAAAD9v4W8AAAAAFtY7z8AAAAA4MzePQAAAADuk+i/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJI674tYjjeMAWyUTegDjAF0lEdAqUd77wazeHV9lChoBkdAkbLbZnL7oGgHTegDaAhHQKlL/UR3/xV1fZQoaAZHQJJEFayKNyZoB03oA2gIR0CpT4cyWRigdX2UKGgGR8BXu5ha1TisaAdN6ANoCEdAqVAf+S8rZ3V9lChoBkdAjEguJtSAH2gHTegDaAhHQKlYC0iQkop1fZQoaAZHQJLFgPSUkfNoB03oA2gIR0CpXMv91loUdX2UKGgGR0CSBtCMxXXAaAdN6ANoCEdAqWCNjLB9C3V9lChoBkdAbPtJCjUNKGgHTegDaAhHQKlhCKTB68h1fZQoaAZHQJNGI1UEPlNoB03oA2gIR0CpZtUyHmA9dX2UKGgGR0CRQQNKh+OPaAdN6ANoCEdAqWu2N96Tn3V9lChoBkdAjuJ++23KCGgHTegDaAhHQKlucE384xV1fZQoaAZHQJIJUY0l7dBoB03oA2gIR0Cpbs5Oi35OdX2UKGgGR0CNsFJ3gUDdaAdN6ANoCEdAqXSJWvKU3XV9lChoBkdAkXTgWWQfZGgHTegDaAhHQKl4+DSPU8V1fZQoaAZHQIsdXz4DcM5oB03oA2gIR0Cpe9BBRhttdX2UKGgGR0CEwAYGdI5HaAdN6ANoCEdAqXxCVbA1vXV9lChoBkdAkOasl9jPOmgHTegDaAhHQKmBy8/2TPl1fZQoaAZHQIWwh/LDAJtoB03oA2gIR0Cphg4nv2GqdX2UKGgGR0CMXNkq+ajOaAdN6ANoCEdAqYjnBk7OmnV9lChoBkdAjBgkgW8AaWgHTegDaAhHQKmJUyi22G91fZQoaAZHQIUDE8s+V1RoB03oA2gIR0CpjrWCuloEdX2UKGgGR0CP7MEal1r7aAdN6ANoCEdAqZMnL/0dzXV9lChoBkdAekm/MW43FWgHTfABaAhHQKmVLPSlWOp1fZQoaAZHQI+D7IYFaB9oB03oA2gIR0CplhD+aScLdX2UKGgGR0CS5LMLWqcWaAdN6ANoCEdAqZZ5W912aHV9lChoBkdAkFAnZ5AyEmgHTegDaAhHQKmgCkUsWft1fZQoaAZHQIyYxisny/doB03oA2gIR0Cpof1oQFs6dX2UKGgGR0CPIAIFeOXFaAdN6ANoCEdAqaLipFTef3V9lChoBkdAjz08NH6MzmgHTegDaAhHQKmjRKgZjx11fZQoaAZHQJEvE1rIo3JoB03oA2gIR0CprPz8YQ8PdX2UKGgGR0CRoqOLzf78aAdN6ANoCEdAqa79AZ88cXV9lChoBkdAkqjyH6/IsGgHTegDaAhHQKmv0ngpBop1fZQoaAZHQJLwgFpwjt5oB03oA2gIR0CpsDpgTh5xdX2UKGgGR0CKj/Uy57PZaAdN6ANoCEdAqbtYz1schnV9lChoBkdAju55wGW2PWgHTegDaAhHQKm9wIk7fYV1fZQoaAZHQJIvKR9w3o9oB03oA2gIR0CpvscSoOx0dX2UKGgGR0CUfhF/hESeaAdN6ANoCEdAqb9CKxcE/3V9lChoBkdAkq+0Pxx1gmgHTegDaAhHQKnJ/O3UhFF1fZQoaAZHQJMnup5u63BoB03oA2gIR0Cpy/2ll9SddX2UKGgGR0CSYJeOXE61aAdN6ANoCEdAqczRvgm7a3V9lChoBkdAhCK0d7v5QGgHTegDaAhHQKnNMQkona51fZQoaAZHQI/bnF72L51oB03oA2gIR0Cp2Xeso2GZdX2UKGgGR0COonPJq7AdaAdN6ANoCEdAqd2iFZgXuXV9lChoBkdAkSlqPKdQPGgHTegDaAhHQKnfBkCFK051fZQoaAZHQI3GtEsrd31oB03oA2gIR0Cp35xBmf5DdX2UKGgGR0CSfIHoouwpaAdN6ANoCEdAqe4tKGtZFHV9lChoBkdAkEQESVW0Z2gHTegDaAhHQKnw65byH211fZQoaAZHQJHaYsNDtw9oB03oA2gIR0Cp8jFdkauPdX2UKGgGR0CK+jHuqm0maAdN6ANoCEdAqfKyDK5kLHV9lChoBkdAgwqV32VVxWgHTegDaAhHQKn+tXqZ+hJ1fZQoaAZHQIu5y8BdUsFoB03oA2gIR0CqAZBLGrCFdX2UKGgGR0CQH+H+qBEsaAdN6ANoCEdAqgKp9XtBwHV9lChoBkdAjKnUO/cnE2gHTegDaAhHQKoDGe5nUUh1fZQoaAZHQJCidGOMl1NoB03oA2gIR0CqDswRoRI0dX2UKGgGR0CUq+vvjOs1aAdN6ANoCEdAqhEkfHPu5XV9lChoBkdAkdtz1XeWOmgHTegDaAhHQKoSBmDlHSZ1fZQoaAZHQJJRCF10T11oB03oA2gIR0CqEnzDn/1hdX2UKGgGR0CNstyS3b22aAdN6ANoCEdAqh4yoMrmQ3V9lChoBkdAjD1J79hqkGgHTegDaAhHQKogReokzGh1fZQoaAZHQJHTRMbm2b5oB03oA2gIR0CqIR/KZDzAdX2UKGgGR0CK4ufNiYsvaAdN6ANoCEdAqiF/1ct5EHV9lChoBkdAjEmpAlfJFWgHTegDaAhHQKosFZs9B8h1fZQoaAZHQIvpWJSBK+VoB03oA2gIR0CqLh4JNTLodX2UKGgGR0B3oWzJIUaiaAdN6ANoCEdAqi8MyFfzBnV9lChoBkdAjnPmQ0XP7mgHTegDaAhHQKoviOTaCcx1fZQoaAZHQIWlgj0L+gloB03oA2gIR0CqO3deyAx0dX2UKGgGR0CK0oIRAbADaAdN6ANoCEdAqj2b8YQ8OnV9lChoBkdAj0s7yYoiLWgHTegDaAhHQKo+dHuJDVp1fZQoaAZHQHQcOAmReTpoB03oA2gIR0CqPt/jjrAydX2UKGgGR0CJ5HSde6ZqaAdN6ANoCEdAqkjiHh0heXV9lChoBkdAgQXpZGKAKGgHTegDaAhHQKpLFpfQa751fZQoaAZHQI5pxuO0b99oB03oA2gIR0CqTDALRa5gdX2UKGgGR0CNaiBGQSzxaAdN6ANoCEdAqkyTG1hLG3V9lChoBkdAkPKo3rD632gHTegDaAhHQKpZJqbBoEl1fZQoaAZHQISdHl+3H7xoB03oA2gIR0CqW/LdN34cdX2UKGgGR0CP9y1FYuCgaAdN6ANoCEdAql0er2g3+HV9lChoBkdAdSg0knkT6GgHTegDaAhHQKpdqE12q1h1fZQoaAZHQJFtVliBoVVoB03oA2gIR0CqaLI55qubdX2UKGgGR0COioOmzjWDaAdN6ANoCEdAqmsWHck+o3V9lChoBkdAkIwdB4Uvf2gHTegDaAhHQKpsCq1gH/t1fZQoaAZHQIMzFSGahHtoB03oA2gIR0CqbHFcyFfzdX2UKGgGR0CQXyokRjBmaAdN6ANoCEdAqneW1OTJQ3V9lChoBkdAjfkSn1nM+2gHTegDaAhHQKp595kbxVh1fZQoaAZHQJIAG5jH4oJoB03oA2gIR0CqevgEt/WldX2UKGgGR0CJ3nPgNwzdaAdN6ANoCEdAqntshHLA6HV9lChoBkdAb/DlzU7SzGgHTegDaAhHQKqFT6KLsKN1fZQoaAZHQJGqcmzByjpoB03oA2gIR0Cqh0Vr6+FldX2UKGgGR0B0vLh3qzJIaAdN6ANoCEdAqog/+IdlunV9lChoBkdAiRePRzBAOmgHTegDaAhHQKqI50nPVut1fZQoaAZHQIWaBCv5gw5oB03oA2gIR0CqkysuFpPAdX2UKGgGR0CLEcY/FBIGaAdN6ANoCEdAqpUZBw++unV9lChoBkdAiMokN4JNTWgHTegDaAhHQKqV6sFMZgp1fZQoaAZHQI/CiFGoaUBoB03oA2gIR0Cqll9ZzPrwdX2UKGgGR0COUxNbC79RaAdN6ANoCEdAqqAeDjBEa3V9lChoBkdAjqeVQAMlTmgHTegDaAhHQKqiG+fywwF1fZQoaAZHQI81BhKDkENoB03oA2gIR0CqowwHzH0cdX2UKGgGR0CGASRjBl+WaAdN6ANoCEdAqqN0FdLQHHV9lChoBkdAfR/rleWv82gHTegDaAhHQKqudKoybhF1fZQoaAZHQHyJ4GMXJo1oB03oA2gIR0CqsMjABT4tdX2UKGgGR0CFGYb961LKaAdN6ANoCEdAqrGpujynUHVlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:329891d413dbe2ac140fcf002abafe7cda5c795a184abeca39736d55fed684de
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:60d59fea37cb93a20d567a084f6a9061aa9de0a29f53fe85e3191ed391ccae45
3
+ size 56894
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.16.3-microsoft-standard-WSL2-x86_64-with-glibc2.35 # 1 SMP Fri Apr 2 22:23:49 UTC 2021
2
+ - Python: 3.10.9
3
+ - Stable-Baselines3: 1.8.0a2
4
+ - PyTorch: 1.13.1+cu117
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fc03e97bb50>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc03e97bbe0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc03e97bc70>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc03e97bd00>", "_build": "<function ActorCriticPolicy._build at 0x7fc03e97bd90>", "forward": "<function ActorCriticPolicy.forward at 0x7fc03e97be20>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fc03e97beb0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc03e97bf40>", "_predict": "<function ActorCriticPolicy._predict at 0x7fc03e984040>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc03e9840d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc03e984160>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc03e9841f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fc03ee49d40>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675618175277668100, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV8QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXy9ob21lL2FjaGFwaW4vLmNvbmRhL2VudnMvSHVnZ2luL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxfL2hvbWUvYWNoYXBpbi8uY29uZGEvZW52cy9IdWdnaW4vbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAMorVkC3+Zg/34aGP8uABb/7aHQ/z+OAPbTy1T4+2CQ+hne+vsGw6znKmRXAHyK7vALlKr/q8ZC7PW8bQFFYAT1w8ac+g4OQO5cjN0CYCKk8V6gHvxCtBrxcGwfAkkaOvHDJAcBicCDAxozFv+nAj78YREs/JVB+vybzBb/q0iE/SsiRv0tCrr9Yu6e/cCu/vpUMCz+we9q/fFcwv5NR5D6WhMk74Tvhv6I0Mj/jwgI+ydbvPOssY796WMu/a0nDPz7iSz9A0tA+mz76vuPitj+4efw+Vz3MPsaMxb/pwI+/v/6XvRq2Ab/L49w+DRYvvyNsS7+uuF7AaCtbP8GVS7+cejA/dODGv0dxWj9GR6HA7gofP2NfwL+kQ9g+e7g5P8+qar/g1l0/fMJ6P3AosT32l/i/Q1aAPsyHHL7YO8I/uHn8PmJwIMA83yU/FvJjP68giL8fEk9AQL2evwiMAD91r/++2WsBv1adbT/8r5m9CsRmPXXzR75MnbY9sC+7vp7inT/tVdq8h3ayPqyoOz+hHk+/MN2Wvxd4fT8oqvs8XaWYv1UvD8BQ1ku/gmGdvLh5/D5XPcw+PN8lPxbyYz+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACZ0LG2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA+M8CPgAAAAAZ5dq/AAAAAMX8ujwAAAAA9/8AQAAAAAB6tYK8AAAAAH4FAUAAAAAA5PXhPQAAAABFj/K/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2WTLNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgBPZDb4AAAAAcQztvwAAAAAdvLE9AAAAANAd9z8AAAAA0otDvQAAAADHBP8/AAAAAHHboL0AAAAATQr6vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJfiSbYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBdS9Y9AAAAAL7X6r8AAAAAqHz2vQAAAADNJvM/AAAAAO30ojwAAAAAfLD5PwAAAAAUaI29AAAAABQk7L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJJgw0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAtv61vQAAAABAT9u/AAAAALtkJD0AAAAAIzHdPwAAAAD9v4W8AAAAAFtY7z8AAAAA4MzePQAAAADuk+i/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJI674tYjjeMAWyUTegDjAF0lEdAqUd77wazeHV9lChoBkdAkbLbZnL7oGgHTegDaAhHQKlL/UR3/xV1fZQoaAZHQJJEFayKNyZoB03oA2gIR0CpT4cyWRigdX2UKGgGR8BXu5ha1TisaAdN6ANoCEdAqVAf+S8rZ3V9lChoBkdAjEguJtSAH2gHTegDaAhHQKlYC0iQkop1fZQoaAZHQJLFgPSUkfNoB03oA2gIR0CpXMv91loUdX2UKGgGR0CSBtCMxXXAaAdN6ANoCEdAqWCNjLB9C3V9lChoBkdAbPtJCjUNKGgHTegDaAhHQKlhCKTB68h1fZQoaAZHQJNGI1UEPlNoB03oA2gIR0CpZtUyHmA9dX2UKGgGR0CRQQNKh+OPaAdN6ANoCEdAqWu2N96Tn3V9lChoBkdAjuJ++23KCGgHTegDaAhHQKlucE384xV1fZQoaAZHQJIJUY0l7dBoB03oA2gIR0Cpbs5Oi35OdX2UKGgGR0CNsFJ3gUDdaAdN6ANoCEdAqXSJWvKU3XV9lChoBkdAkXTgWWQfZGgHTegDaAhHQKl4+DSPU8V1fZQoaAZHQIsdXz4DcM5oB03oA2gIR0Cpe9BBRhttdX2UKGgGR0CEwAYGdI5HaAdN6ANoCEdAqXxCVbA1vXV9lChoBkdAkOasl9jPOmgHTegDaAhHQKmBy8/2TPl1fZQoaAZHQIWwh/LDAJtoB03oA2gIR0Cphg4nv2GqdX2UKGgGR0CMXNkq+ajOaAdN6ANoCEdAqYjnBk7OmnV9lChoBkdAjBgkgW8AaWgHTegDaAhHQKmJUyi22G91fZQoaAZHQIUDE8s+V1RoB03oA2gIR0CpjrWCuloEdX2UKGgGR0CP7MEal1r7aAdN6ANoCEdAqZMnL/0dzXV9lChoBkdAekm/MW43FWgHTfABaAhHQKmVLPSlWOp1fZQoaAZHQI+D7IYFaB9oB03oA2gIR0CplhD+aScLdX2UKGgGR0CS5LMLWqcWaAdN6ANoCEdAqZZ5W912aHV9lChoBkdAkFAnZ5AyEmgHTegDaAhHQKmgCkUsWft1fZQoaAZHQIyYxisny/doB03oA2gIR0Cpof1oQFs6dX2UKGgGR0CPIAIFeOXFaAdN6ANoCEdAqaLipFTef3V9lChoBkdAjz08NH6MzmgHTegDaAhHQKmjRKgZjx11fZQoaAZHQJEvE1rIo3JoB03oA2gIR0CprPz8YQ8PdX2UKGgGR0CRoqOLzf78aAdN6ANoCEdAqa79AZ88cXV9lChoBkdAkqjyH6/IsGgHTegDaAhHQKmv0ngpBop1fZQoaAZHQJLwgFpwjt5oB03oA2gIR0CpsDpgTh5xdX2UKGgGR0CKj/Uy57PZaAdN6ANoCEdAqbtYz1schnV9lChoBkdAju55wGW2PWgHTegDaAhHQKm9wIk7fYV1fZQoaAZHQJIvKR9w3o9oB03oA2gIR0CpvscSoOx0dX2UKGgGR0CUfhF/hESeaAdN6ANoCEdAqb9CKxcE/3V9lChoBkdAkq+0Pxx1gmgHTegDaAhHQKnJ/O3UhFF1fZQoaAZHQJMnup5u63BoB03oA2gIR0Cpy/2ll9SddX2UKGgGR0CSYJeOXE61aAdN6ANoCEdAqczRvgm7a3V9lChoBkdAhCK0d7v5QGgHTegDaAhHQKnNMQkona51fZQoaAZHQI/bnF72L51oB03oA2gIR0Cp2Xeso2GZdX2UKGgGR0COonPJq7AdaAdN6ANoCEdAqd2iFZgXuXV9lChoBkdAkSlqPKdQPGgHTegDaAhHQKnfBkCFK051fZQoaAZHQI3GtEsrd31oB03oA2gIR0Cp35xBmf5DdX2UKGgGR0CSfIHoouwpaAdN6ANoCEdAqe4tKGtZFHV9lChoBkdAkEQESVW0Z2gHTegDaAhHQKnw65byH211fZQoaAZHQJHaYsNDtw9oB03oA2gIR0Cp8jFdkauPdX2UKGgGR0CK+jHuqm0maAdN6ANoCEdAqfKyDK5kLHV9lChoBkdAgwqV32VVxWgHTegDaAhHQKn+tXqZ+hJ1fZQoaAZHQIu5y8BdUsFoB03oA2gIR0CqAZBLGrCFdX2UKGgGR0CQH+H+qBEsaAdN6ANoCEdAqgKp9XtBwHV9lChoBkdAjKnUO/cnE2gHTegDaAhHQKoDGe5nUUh1fZQoaAZHQJCidGOMl1NoB03oA2gIR0CqDswRoRI0dX2UKGgGR0CUq+vvjOs1aAdN6ANoCEdAqhEkfHPu5XV9lChoBkdAkdtz1XeWOmgHTegDaAhHQKoSBmDlHSZ1fZQoaAZHQJJRCF10T11oB03oA2gIR0CqEnzDn/1hdX2UKGgGR0CNstyS3b22aAdN6ANoCEdAqh4yoMrmQ3V9lChoBkdAjD1J79hqkGgHTegDaAhHQKogReokzGh1fZQoaAZHQJHTRMbm2b5oB03oA2gIR0CqIR/KZDzAdX2UKGgGR0CK4ufNiYsvaAdN6ANoCEdAqiF/1ct5EHV9lChoBkdAjEmpAlfJFWgHTegDaAhHQKosFZs9B8h1fZQoaAZHQIvpWJSBK+VoB03oA2gIR0CqLh4JNTLodX2UKGgGR0B3oWzJIUaiaAdN6ANoCEdAqi8MyFfzBnV9lChoBkdAjnPmQ0XP7mgHTegDaAhHQKoviOTaCcx1fZQoaAZHQIWlgj0L+gloB03oA2gIR0CqO3deyAx0dX2UKGgGR0CK0oIRAbADaAdN6ANoCEdAqj2b8YQ8OnV9lChoBkdAj0s7yYoiLWgHTegDaAhHQKo+dHuJDVp1fZQoaAZHQHQcOAmReTpoB03oA2gIR0CqPt/jjrAydX2UKGgGR0CJ5HSde6ZqaAdN6ANoCEdAqkjiHh0heXV9lChoBkdAgQXpZGKAKGgHTegDaAhHQKpLFpfQa751fZQoaAZHQI5pxuO0b99oB03oA2gIR0CqTDALRa5gdX2UKGgGR0CNaiBGQSzxaAdN6ANoCEdAqkyTG1hLG3V9lChoBkdAkPKo3rD632gHTegDaAhHQKpZJqbBoEl1fZQoaAZHQISdHl+3H7xoB03oA2gIR0CqW/LdN34cdX2UKGgGR0CP9y1FYuCgaAdN6ANoCEdAql0er2g3+HV9lChoBkdAdSg0knkT6GgHTegDaAhHQKpdqE12q1h1fZQoaAZHQJFtVliBoVVoB03oA2gIR0CqaLI55qubdX2UKGgGR0COioOmzjWDaAdN6ANoCEdAqmsWHck+o3V9lChoBkdAkIwdB4Uvf2gHTegDaAhHQKpsCq1gH/t1fZQoaAZHQIMzFSGahHtoB03oA2gIR0CqbHFcyFfzdX2UKGgGR0CQXyokRjBmaAdN6ANoCEdAqneW1OTJQ3V9lChoBkdAjfkSn1nM+2gHTegDaAhHQKp595kbxVh1fZQoaAZHQJIAG5jH4oJoB03oA2gIR0CqevgEt/WldX2UKGgGR0CJ3nPgNwzdaAdN6ANoCEdAqntshHLA6HV9lChoBkdAb/DlzU7SzGgHTegDaAhHQKqFT6KLsKN1fZQoaAZHQJGqcmzByjpoB03oA2gIR0Cqh0Vr6+FldX2UKGgGR0B0vLh3qzJIaAdN6ANoCEdAqog/+IdlunV9lChoBkdAiRePRzBAOmgHTegDaAhHQKqI50nPVut1fZQoaAZHQIWaBCv5gw5oB03oA2gIR0CqkysuFpPAdX2UKGgGR0CLEcY/FBIGaAdN6ANoCEdAqpUZBw++unV9lChoBkdAiMokN4JNTWgHTegDaAhHQKqV6sFMZgp1fZQoaAZHQI/CiFGoaUBoB03oA2gIR0Cqll9ZzPrwdX2UKGgGR0COUxNbC79RaAdN6ANoCEdAqqAeDjBEa3V9lChoBkdAjqeVQAMlTmgHTegDaAhHQKqiG+fywwF1fZQoaAZHQI81BhKDkENoB03oA2gIR0CqowwHzH0cdX2UKGgGR0CGASRjBl+WaAdN6ANoCEdAqqN0FdLQHHV9lChoBkdAfR/rleWv82gHTegDaAhHQKqudKoybhF1fZQoaAZHQHyJ4GMXJo1oB03oA2gIR0CqsMjABT4tdX2UKGgGR0CFGYb961LKaAdN6ANoCEdAqrGpujynUHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.16.3-microsoft-standard-WSL2-x86_64-with-glibc2.35 # 1 SMP Fri Apr 2 22:23:49 UTC 2021", "Python": "3.10.9", "Stable-Baselines3": "1.8.0a2", "PyTorch": "1.13.1+cu117", "GPU Enabled": "True", "Numpy": "1.23.5", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (469 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 525.8610151882233, "std_reward": 96.75393942987185, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-05T19:23:16.387918"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:adfb9400dc31e3871bf9df03f66b2a61b559a26b62d356d6718def7729654b59
3
+ size 2129