Benedict-L commited on
Commit
c2f1123
·
verified ·
1 Parent(s): f609d27

End of training

Browse files
README.md ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: microsoft/layoutlm-base-uncased
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - funsd
8
+ model-index:
9
+ - name: layoutlm-funsd
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # layoutlm-funsd
17
+
18
+ This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 0.6930
21
+ - Answer: {'precision': 0.705114254624592, 'recall': 0.8009888751545118, 'f1': 0.7499999999999999, 'number': 809}
22
+ - Header: {'precision': 0.2642857142857143, 'recall': 0.31092436974789917, 'f1': 0.28571428571428575, 'number': 119}
23
+ - Question: {'precision': 0.7760141093474426, 'recall': 0.8262910798122066, 'f1': 0.8003638017280582, 'number': 1065}
24
+ - Overall Precision: 0.7136
25
+ - Overall Recall: 0.7852
26
+ - Overall F1: 0.7477
27
+ - Overall Accuracy: 0.8082
28
+
29
+ ## Model description
30
+
31
+ More information needed
32
+
33
+ ## Intended uses & limitations
34
+
35
+ More information needed
36
+
37
+ ## Training and evaluation data
38
+
39
+ More information needed
40
+
41
+ ## Training procedure
42
+
43
+ ### Training hyperparameters
44
+
45
+ The following hyperparameters were used during training:
46
+ - learning_rate: 3e-05
47
+ - train_batch_size: 16
48
+ - eval_batch_size: 8
49
+ - seed: 42
50
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
+ - lr_scheduler_type: linear
52
+ - num_epochs: 15
53
+ - mixed_precision_training: Native AMP
54
+
55
+ ### Training results
56
+
57
+ | Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
58
+ |:-------------:|:-----:|:----:|:---------------:|:-------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
59
+ | 1.812 | 1.0 | 10 | 1.5657 | {'precision': 0.026246719160104987, 'recall': 0.024721878862793572, 'f1': 0.02546148949713558, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.1956521739130435, 'recall': 0.1267605633802817, 'f1': 0.15384615384615385, 'number': 1065} | 0.1067 | 0.0778 | 0.0900 | 0.3859 |
60
+ | 1.4244 | 2.0 | 20 | 1.2288 | {'precision': 0.14189189189189189, 'recall': 0.103831891223733, 'f1': 0.11991434689507495, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.42844202898550726, 'recall': 0.444131455399061, 'f1': 0.43614568925772246, 'number': 1065} | 0.3284 | 0.2795 | 0.3020 | 0.5784 |
61
+ | 1.1038 | 3.0 | 30 | 0.9813 | {'precision': 0.4468629961587708, 'recall': 0.43139678615574784, 'f1': 0.4389937106918239, 'number': 809} | {'precision': 0.03225806451612903, 'recall': 0.008403361344537815, 'f1': 0.013333333333333332, 'number': 119} | {'precision': 0.6163522012578616, 'recall': 0.644131455399061, 'f1': 0.6299357208448118, 'number': 1065} | 0.5382 | 0.5198 | 0.5288 | 0.7101 |
62
+ | 0.8512 | 4.0 | 40 | 0.8085 | {'precision': 0.5877192982456141, 'recall': 0.6625463535228677, 'f1': 0.6228936664729808, 'number': 809} | {'precision': 0.109375, 'recall': 0.058823529411764705, 'f1': 0.07650273224043715, 'number': 119} | {'precision': 0.6793760831889082, 'recall': 0.7361502347417841, 'f1': 0.7066246056782335, 'number': 1065} | 0.6230 | 0.6658 | 0.6437 | 0.7566 |
63
+ | 0.6646 | 5.0 | 50 | 0.7071 | {'precision': 0.6478723404255319, 'recall': 0.7527812113720643, 'f1': 0.6963979416809606, 'number': 809} | {'precision': 0.21052631578947367, 'recall': 0.16806722689075632, 'f1': 0.1869158878504673, 'number': 119} | {'precision': 0.6853658536585366, 'recall': 0.7915492957746478, 'f1': 0.7346405228758169, 'number': 1065} | 0.6499 | 0.7386 | 0.6914 | 0.7871 |
64
+ | 0.5615 | 6.0 | 60 | 0.6934 | {'precision': 0.6427840327533265, 'recall': 0.7762669962917181, 'f1': 0.7032474804031356, 'number': 809} | {'precision': 0.2191780821917808, 'recall': 0.13445378151260504, 'f1': 0.16666666666666669, 'number': 119} | {'precision': 0.7584973166368515, 'recall': 0.7962441314553991, 'f1': 0.7769125057260651, 'number': 1065} | 0.6882 | 0.7486 | 0.7171 | 0.8008 |
65
+ | 0.4852 | 7.0 | 70 | 0.6675 | {'precision': 0.6806451612903226, 'recall': 0.7824474660074165, 'f1': 0.7280046003450259, 'number': 809} | {'precision': 0.2421875, 'recall': 0.2605042016806723, 'f1': 0.2510121457489879, 'number': 119} | {'precision': 0.7596759675967597, 'recall': 0.7924882629107981, 'f1': 0.775735294117647, 'number': 1065} | 0.6953 | 0.7566 | 0.7247 | 0.8098 |
66
+ | 0.4261 | 8.0 | 80 | 0.6601 | {'precision': 0.6707818930041153, 'recall': 0.8059332509270705, 'f1': 0.7321729365524987, 'number': 809} | {'precision': 0.23770491803278687, 'recall': 0.24369747899159663, 'f1': 0.24066390041493776, 'number': 119} | {'precision': 0.7515257192676548, 'recall': 0.8093896713615023, 'f1': 0.779385171790235, 'number': 1065} | 0.6885 | 0.7742 | 0.7289 | 0.8027 |
67
+ | 0.3798 | 9.0 | 90 | 0.6595 | {'precision': 0.6950431034482759, 'recall': 0.7972805933250927, 'f1': 0.7426597582037997, 'number': 809} | {'precision': 0.2727272727272727, 'recall': 0.2773109243697479, 'f1': 0.27499999999999997, 'number': 119} | {'precision': 0.7698343504795118, 'recall': 0.8291079812206573, 'f1': 0.7983725135623869, 'number': 1065} | 0.7108 | 0.7832 | 0.7453 | 0.8120 |
68
+ | 0.366 | 10.0 | 100 | 0.6659 | {'precision': 0.6912393162393162, 'recall': 0.799752781211372, 'f1': 0.7415472779369628, 'number': 809} | {'precision': 0.29310344827586204, 'recall': 0.2857142857142857, 'f1': 0.2893617021276596, 'number': 119} | {'precision': 0.7822222222222223, 'recall': 0.8262910798122066, 'f1': 0.8036529680365297, 'number': 1065} | 0.7170 | 0.7832 | 0.7487 | 0.8196 |
69
+ | 0.3112 | 11.0 | 110 | 0.6790 | {'precision': 0.674562306900103, 'recall': 0.8096415327564895, 'f1': 0.7359550561797752, 'number': 809} | {'precision': 0.2890625, 'recall': 0.31092436974789917, 'f1': 0.29959514170040485, 'number': 119} | {'precision': 0.7867383512544803, 'recall': 0.8244131455399061, 'f1': 0.8051352590554791, 'number': 1065} | 0.7088 | 0.7878 | 0.7462 | 0.8022 |
70
+ | 0.3003 | 12.0 | 120 | 0.6876 | {'precision': 0.7192393736017897, 'recall': 0.7948084054388134, 'f1': 0.7551379917792131, 'number': 809} | {'precision': 0.2824427480916031, 'recall': 0.31092436974789917, 'f1': 0.29600000000000004, 'number': 119} | {'precision': 0.7788546255506608, 'recall': 0.8300469483568075, 'f1': 0.8036363636363637, 'number': 1065} | 0.7241 | 0.7847 | 0.7532 | 0.8069 |
71
+ | 0.28 | 13.0 | 130 | 0.6905 | {'precision': 0.7013963480128894, 'recall': 0.8071693448702101, 'f1': 0.7505747126436783, 'number': 809} | {'precision': 0.2923076923076923, 'recall': 0.31932773109243695, 'f1': 0.3052208835341365, 'number': 119} | {'precision': 0.7860340196956133, 'recall': 0.8244131455399061, 'f1': 0.8047662694775436, 'number': 1065} | 0.7204 | 0.7873 | 0.7523 | 0.8104 |
72
+ | 0.2654 | 14.0 | 140 | 0.6952 | {'precision': 0.7069154774972558, 'recall': 0.796044499381953, 'f1': 0.7488372093023256, 'number': 809} | {'precision': 0.2569444444444444, 'recall': 0.31092436974789917, 'f1': 0.28136882129277563, 'number': 119} | {'precision': 0.7758164165931156, 'recall': 0.8253521126760563, 'f1': 0.7998180163785259, 'number': 1065} | 0.7130 | 0.7827 | 0.7462 | 0.8068 |
73
+ | 0.2629 | 15.0 | 150 | 0.6930 | {'precision': 0.705114254624592, 'recall': 0.8009888751545118, 'f1': 0.7499999999999999, 'number': 809} | {'precision': 0.2642857142857143, 'recall': 0.31092436974789917, 'f1': 0.28571428571428575, 'number': 119} | {'precision': 0.7760141093474426, 'recall': 0.8262910798122066, 'f1': 0.8003638017280582, 'number': 1065} | 0.7136 | 0.7852 | 0.7477 | 0.8082 |
74
+
75
+
76
+ ### Framework versions
77
+
78
+ - Transformers 4.41.2
79
+ - Pytorch 2.3.1+cu118
80
+ - Datasets 2.19.2
81
+ - Tokenizers 0.19.1
logs/events.out.tfevents.1717846109.Designori.20936.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:f590821823b0ee3a18dc3c897e63cc1fcb96a40d7e5f324d7e5468b35ddbeead
3
- size 14915
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ad760a72d424e58f3818e69dd1cc98ed707e7eea4debc0da7d9580ea551aacd9
3
+ size 15984
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:a521cc73aff8bf7e5cc3c041c0d620493199f5f1a16a0fb0498f28ccfdf278f7
3
  size 450558212
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:feb217a6c5639408c4e87175bdf4f8ddf474fe55a2a6367527ae089167d5074c
3
  size 450558212
preprocessor_config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_valid_processor_keys": [
3
+ "images",
4
+ "do_resize",
5
+ "size",
6
+ "resample",
7
+ "apply_ocr",
8
+ "ocr_lang",
9
+ "tesseract_config",
10
+ "return_tensors",
11
+ "data_format",
12
+ "input_data_format"
13
+ ],
14
+ "apply_ocr": true,
15
+ "do_resize": true,
16
+ "image_processor_type": "LayoutLMv2ImageProcessor",
17
+ "ocr_lang": null,
18
+ "processor_class": "LayoutLMv2Processor",
19
+ "resample": 2,
20
+ "size": {
21
+ "height": 224,
22
+ "width": 224
23
+ },
24
+ "tesseract_config": ""
25
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "additional_special_tokens": [],
45
+ "apply_ocr": false,
46
+ "clean_up_tokenization_spaces": true,
47
+ "cls_token": "[CLS]",
48
+ "cls_token_box": [
49
+ 0,
50
+ 0,
51
+ 0,
52
+ 0
53
+ ],
54
+ "do_basic_tokenize": true,
55
+ "do_lower_case": true,
56
+ "mask_token": "[MASK]",
57
+ "model_max_length": 512,
58
+ "never_split": null,
59
+ "only_label_first_subword": true,
60
+ "pad_token": "[PAD]",
61
+ "pad_token_box": [
62
+ 0,
63
+ 0,
64
+ 0,
65
+ 0
66
+ ],
67
+ "pad_token_label": -100,
68
+ "processor_class": "LayoutLMv2Processor",
69
+ "sep_token": "[SEP]",
70
+ "sep_token_box": [
71
+ 1000,
72
+ 1000,
73
+ 1000,
74
+ 1000
75
+ ],
76
+ "strip_accents": null,
77
+ "tokenize_chinese_chars": true,
78
+ "tokenizer_class": "LayoutLMv2Tokenizer",
79
+ "unk_token": "[UNK]"
80
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff