Benedict-L commited on
Commit
5b33462
1 Parent(s): 38c7aac

End of training

Browse files
README.md CHANGED
@@ -17,14 +17,14 @@ should probably proofread and complete it, then remove this comment. -->
17
 
18
  This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
19
  It achieves the following results on the evaluation set:
20
- - Loss: 0.6985
21
- - Answer: {'precision': 0.7292134831460674, 'recall': 0.8022249690976514, 'f1': 0.7639788110653325, 'number': 809}
22
- - Header: {'precision': 0.2962962962962963, 'recall': 0.33613445378151263, 'f1': 0.31496062992125984, 'number': 119}
23
- - Question: {'precision': 0.7711267605633803, 'recall': 0.8225352112676056, 'f1': 0.7960018173557474, 'number': 1065}
24
- - Overall Precision: 0.7242
25
- - Overall Recall: 0.7852
26
- - Overall F1: 0.7535
27
- - Overall Accuracy: 0.8108
28
 
29
  ## Model description
30
 
@@ -54,23 +54,23 @@ The following hyperparameters were used during training:
54
 
55
  ### Training results
56
 
57
- | Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
58
- |:-------------:|:-----:|:----:|:---------------:|:----------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
59
- | 1.7326 | 1.0 | 10 | 1.5225 | {'precision': 0.0576307363927428, 'recall': 0.06674907292954264, 'f1': 0.06185567010309278, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.2126899016979446, 'recall': 0.22347417840375586, 'f1': 0.21794871794871795, 'number': 1065} | 0.1420 | 0.1465 | 0.1442 | 0.4302 |
60
- | 1.3559 | 2.0 | 20 | 1.1907 | {'precision': 0.2647058823529412, 'recall': 0.22249690976514216, 'f1': 0.24177300201477503, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.48519736842105265, 'recall': 0.5539906103286385, 'f1': 0.5173169662428759, 'number': 1065} | 0.4055 | 0.3864 | 0.3957 | 0.5967 |
61
- | 1.0329 | 3.0 | 30 | 0.9021 | {'precision': 0.4879518072289157, 'recall': 0.5006180469715699, 'f1': 0.49420378279438687, 'number': 809} | {'precision': 0.1, 'recall': 0.04201680672268908, 'f1': 0.059171597633136105, 'number': 119} | {'precision': 0.647636039250669, 'recall': 0.6816901408450704, 'f1': 0.6642268984446478, 'number': 1065} | 0.5677 | 0.5700 | 0.5689 | 0.7304 |
62
- | 0.779 | 4.0 | 40 | 0.7524 | {'precision': 0.6258205689277899, 'recall': 0.7070457354758962, 'f1': 0.6639582124201974, 'number': 809} | {'precision': 0.25675675675675674, 'recall': 0.15966386554621848, 'f1': 0.19689119170984457, 'number': 119} | {'precision': 0.6596814752724225, 'recall': 0.7389671361502348, 'f1': 0.6970770593445527, 'number': 1065} | 0.6318 | 0.6914 | 0.6603 | 0.7734 |
63
- | 0.6249 | 5.0 | 50 | 0.6899 | {'precision': 0.6615553121577218, 'recall': 0.7466007416563659, 'f1': 0.7015098722415796, 'number': 809} | {'precision': 0.3157894736842105, 'recall': 0.20168067226890757, 'f1': 0.24615384615384614, 'number': 119} | {'precision': 0.6818181818181818, 'recall': 0.7746478873239436, 'f1': 0.7252747252747253, 'number': 1065} | 0.6608 | 0.7291 | 0.6932 | 0.7938 |
64
- | 0.5376 | 6.0 | 60 | 0.6911 | {'precision': 0.6773504273504274, 'recall': 0.7836835599505563, 'f1': 0.7266475644699141, 'number': 809} | {'precision': 0.29411764705882354, 'recall': 0.21008403361344538, 'f1': 0.2450980392156863, 'number': 119} | {'precision': 0.7166377816291161, 'recall': 0.7765258215962442, 'f1': 0.7453808021631364, 'number': 1065} | 0.6832 | 0.7456 | 0.7131 | 0.7926 |
65
- | 0.4627 | 7.0 | 70 | 0.6573 | {'precision': 0.6983783783783784, 'recall': 0.7985166872682324, 'f1': 0.7450980392156863, 'number': 809} | {'precision': 0.2882882882882883, 'recall': 0.2689075630252101, 'f1': 0.2782608695652174, 'number': 119} | {'precision': 0.735494880546075, 'recall': 0.8093896713615023, 'f1': 0.7706750111756816, 'number': 1065} | 0.6975 | 0.7727 | 0.7332 | 0.8012 |
66
- | 0.4082 | 8.0 | 80 | 0.6650 | {'precision': 0.6871741397288843, 'recall': 0.8145859085290482, 'f1': 0.7454751131221721, 'number': 809} | {'precision': 0.28440366972477066, 'recall': 0.2605042016806723, 'f1': 0.2719298245614035, 'number': 119} | {'precision': 0.7446626814688301, 'recall': 0.8187793427230047, 'f1': 0.7799642218246869, 'number': 1065} | 0.6976 | 0.7837 | 0.7382 | 0.8040 |
67
- | 0.3665 | 9.0 | 90 | 0.6682 | {'precision': 0.7011995637949836, 'recall': 0.7948084054388134, 'f1': 0.7450753186558517, 'number': 809} | {'precision': 0.3076923076923077, 'recall': 0.3025210084033613, 'f1': 0.30508474576271183, 'number': 119} | {'precision': 0.7519582245430809, 'recall': 0.8112676056338028, 'f1': 0.7804878048780487, 'number': 1065} | 0.7068 | 0.7742 | 0.7390 | 0.8071 |
68
- | 0.3554 | 10.0 | 100 | 0.6680 | {'precision': 0.7168338907469343, 'recall': 0.7948084054388134, 'f1': 0.753810082063306, 'number': 809} | {'precision': 0.3333333333333333, 'recall': 0.35294117647058826, 'f1': 0.34285714285714286, 'number': 119} | {'precision': 0.7586206896551724, 'recall': 0.8262910798122066, 'f1': 0.7910112359550561, 'number': 1065} | 0.7169 | 0.7852 | 0.7495 | 0.8101 |
69
- | 0.3056 | 11.0 | 110 | 0.6786 | {'precision': 0.707027027027027, 'recall': 0.8084054388133498, 'f1': 0.7543252595155711, 'number': 809} | {'precision': 0.296, 'recall': 0.31092436974789917, 'f1': 0.30327868852459017, 'number': 119} | {'precision': 0.7668393782383419, 'recall': 0.8338028169014085, 'f1': 0.7989203778677464, 'number': 1065} | 0.7151 | 0.7923 | 0.7517 | 0.8087 |
70
- | 0.2977 | 12.0 | 120 | 0.6900 | {'precision': 0.7291196388261851, 'recall': 0.7985166872682324, 'f1': 0.7622418879056048, 'number': 809} | {'precision': 0.32575757575757575, 'recall': 0.36134453781512604, 'f1': 0.3426294820717131, 'number': 119} | {'precision': 0.7726872246696035, 'recall': 0.8234741784037559, 'f1': 0.7972727272727272, 'number': 1065} | 0.7274 | 0.7858 | 0.7554 | 0.8097 |
71
- | 0.2788 | 13.0 | 130 | 0.6937 | {'precision': 0.7224669603524229, 'recall': 0.8108776266996292, 'f1': 0.7641234711706465, 'number': 809} | {'precision': 0.3023255813953488, 'recall': 0.3277310924369748, 'f1': 0.314516129032258, 'number': 119} | {'precision': 0.7724867724867724, 'recall': 0.8225352112676056, 'f1': 0.7967257844474761, 'number': 1065} | 0.7236 | 0.7883 | 0.7546 | 0.8099 |
72
- | 0.2593 | 14.0 | 140 | 0.6981 | {'precision': 0.7278835386338186, 'recall': 0.8034610630407911, 'f1': 0.7638072855464161, 'number': 809} | {'precision': 0.29850746268656714, 'recall': 0.33613445378151263, 'f1': 0.31620553359683795, 'number': 119} | {'precision': 0.7715289982425307, 'recall': 0.8244131455399061, 'f1': 0.7970948706309579, 'number': 1065} | 0.7242 | 0.7868 | 0.7542 | 0.8110 |
73
- | 0.2581 | 15.0 | 150 | 0.6985 | {'precision': 0.7292134831460674, 'recall': 0.8022249690976514, 'f1': 0.7639788110653325, 'number': 809} | {'precision': 0.2962962962962963, 'recall': 0.33613445378151263, 'f1': 0.31496062992125984, 'number': 119} | {'precision': 0.7711267605633803, 'recall': 0.8225352112676056, 'f1': 0.7960018173557474, 'number': 1065} | 0.7242 | 0.7852 | 0.7535 | 0.8108 |
74
 
75
 
76
  ### Framework versions
 
17
 
18
  This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
19
  It achieves the following results on the evaluation set:
20
+ - Loss: 0.6794
21
+ - Answer: {'precision': 0.7130242825607064, 'recall': 0.7985166872682324, 'f1': 0.7533527696793003, 'number': 809}
22
+ - Header: {'precision': 0.2907801418439716, 'recall': 0.3445378151260504, 'f1': 0.3153846153846154, 'number': 119}
23
+ - Question: {'precision': 0.773286467486819, 'recall': 0.8262910798122066, 'f1': 0.7989105764866091, 'number': 1065}
24
+ - Overall Precision: 0.7172
25
+ - Overall Recall: 0.7863
26
+ - Overall F1: 0.7501
27
+ - Overall Accuracy: 0.8053
28
 
29
  ## Model description
30
 
 
54
 
55
  ### Training results
56
 
57
+ | Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
58
+ |:-------------:|:-----:|:----:|:---------------:|:-----------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
59
+ | 1.8172 | 1.0 | 10 | 1.5984 | {'precision': 0.02287581699346405, 'recall': 0.0173053152039555, 'f1': 0.019704433497536946, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.2019704433497537, 'recall': 0.11549295774647887, 'f1': 0.14695340501792115, 'number': 1065} | 0.1122 | 0.0687 | 0.0853 | 0.3383 |
60
+ | 1.4573 | 2.0 | 20 | 1.2552 | {'precision': 0.21509106678230702, 'recall': 0.3065512978986403, 'f1': 0.2528032619775739, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.4427123928293063, 'recall': 0.5333333333333333, 'f1': 0.4838160136286201, 'number': 1065} | 0.3350 | 0.4094 | 0.3685 | 0.5671 |
61
+ | 1.1187 | 3.0 | 30 | 0.9227 | {'precision': 0.47129909365558914, 'recall': 0.5784919653893696, 'f1': 0.5194228634850167, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.5402558314522197, 'recall': 0.6741784037558686, 'f1': 0.5998329156223893, 'number': 1065} | 0.5081 | 0.5951 | 0.5482 | 0.6953 |
62
+ | 0.8526 | 4.0 | 40 | 0.7688 | {'precision': 0.6256410256410256, 'recall': 0.754017305315204, 'f1': 0.6838565022421524, 'number': 809} | {'precision': 0.2564102564102564, 'recall': 0.08403361344537816, 'f1': 0.12658227848101264, 'number': 119} | {'precision': 0.6581125827814569, 'recall': 0.7464788732394366, 'f1': 0.6995160580730313, 'number': 1065} | 0.6368 | 0.7100 | 0.6714 | 0.7562 |
63
+ | 0.6873 | 5.0 | 50 | 0.6983 | {'precision': 0.6456776947705443, 'recall': 0.7478368355995055, 'f1': 0.693012600229095, 'number': 809} | {'precision': 0.22916666666666666, 'recall': 0.18487394957983194, 'f1': 0.2046511627906977, 'number': 119} | {'precision': 0.6671814671814672, 'recall': 0.8112676056338028, 'f1': 0.7322033898305085, 'number': 1065} | 0.6405 | 0.7481 | 0.6901 | 0.7729 |
64
+ | 0.5884 | 6.0 | 60 | 0.6816 | {'precision': 0.6539256198347108, 'recall': 0.7824474660074165, 'f1': 0.7124366910523354, 'number': 809} | {'precision': 0.273972602739726, 'recall': 0.16806722689075632, 'f1': 0.20833333333333331, 'number': 119} | {'precision': 0.7033613445378152, 'recall': 0.7859154929577464, 'f1': 0.7423503325942351, 'number': 1065} | 0.6679 | 0.7476 | 0.7055 | 0.7799 |
65
+ | 0.5091 | 7.0 | 70 | 0.6491 | {'precision': 0.6754478398314014, 'recall': 0.792336217552534, 'f1': 0.7292377701934016, 'number': 809} | {'precision': 0.256, 'recall': 0.2689075630252101, 'f1': 0.26229508196721313, 'number': 119} | {'precision': 0.7409326424870466, 'recall': 0.8056338028169014, 'f1': 0.7719298245614035, 'number': 1065} | 0.6859 | 0.7682 | 0.7247 | 0.7920 |
66
+ | 0.452 | 8.0 | 80 | 0.6574 | {'precision': 0.6897654584221748, 'recall': 0.799752781211372, 'f1': 0.7406983400114482, 'number': 809} | {'precision': 0.21705426356589147, 'recall': 0.23529411764705882, 'f1': 0.22580645161290322, 'number': 119} | {'precision': 0.7427597955706985, 'recall': 0.8187793427230047, 'f1': 0.7789191603394373, 'number': 1065} | 0.6903 | 0.7762 | 0.7308 | 0.7949 |
67
+ | 0.3956 | 9.0 | 90 | 0.6481 | {'precision': 0.6923890063424947, 'recall': 0.8096415327564895, 'f1': 0.7464387464387465, 'number': 809} | {'precision': 0.2748091603053435, 'recall': 0.3025210084033613, 'f1': 0.288, 'number': 119} | {'precision': 0.7578671328671329, 'recall': 0.8140845070422535, 'f1': 0.7849705749207787, 'number': 1065} | 0.7015 | 0.7817 | 0.7394 | 0.8006 |
68
+ | 0.377 | 10.0 | 100 | 0.6458 | {'precision': 0.7069716775599129, 'recall': 0.8022249690976514, 'f1': 0.751592356687898, 'number': 809} | {'precision': 0.30578512396694213, 'recall': 0.31092436974789917, 'f1': 0.30833333333333335, 'number': 119} | {'precision': 0.7688888888888888, 'recall': 0.812206572769953, 'f1': 0.7899543378995433, 'number': 1065} | 0.7167 | 0.7782 | 0.7462 | 0.8054 |
69
+ | 0.3216 | 11.0 | 110 | 0.6550 | {'precision': 0.7024972855591748, 'recall': 0.799752781211372, 'f1': 0.7479768786127167, 'number': 809} | {'precision': 0.2814814814814815, 'recall': 0.31932773109243695, 'f1': 0.2992125984251969, 'number': 119} | {'precision': 0.7577054794520548, 'recall': 0.8309859154929577, 'f1': 0.7926556202418271, 'number': 1065} | 0.7059 | 0.7878 | 0.7446 | 0.8031 |
70
+ | 0.3083 | 12.0 | 120 | 0.6539 | {'precision': 0.7086527929901424, 'recall': 0.799752781211372, 'f1': 0.751451800232288, 'number': 809} | {'precision': 0.29133858267716534, 'recall': 0.31092436974789917, 'f1': 0.3008130081300813, 'number': 119} | {'precision': 0.7714033539276258, 'recall': 0.8206572769953052, 'f1': 0.7952684258416743, 'number': 1065} | 0.7170 | 0.7817 | 0.7480 | 0.8066 |
71
+ | 0.2867 | 13.0 | 130 | 0.6673 | {'precision': 0.7047930283224401, 'recall': 0.799752781211372, 'f1': 0.7492762015055008, 'number': 809} | {'precision': 0.26666666666666666, 'recall': 0.3025210084033613, 'f1': 0.28346456692913385, 'number': 119} | {'precision': 0.7573402417962003, 'recall': 0.8234741784037559, 'f1': 0.7890238416554206, 'number': 1065} | 0.7056 | 0.7827 | 0.7422 | 0.8055 |
72
+ | 0.2718 | 14.0 | 140 | 0.6770 | {'precision': 0.7106430155210643, 'recall': 0.792336217552534, 'f1': 0.7492694330800702, 'number': 809} | {'precision': 0.3, 'recall': 0.35294117647058826, 'f1': 0.3243243243243243, 'number': 119} | {'precision': 0.7730870712401056, 'recall': 0.8253521126760563, 'f1': 0.798365122615804, 'number': 1065} | 0.7168 | 0.7837 | 0.7488 | 0.8053 |
73
+ | 0.2715 | 15.0 | 150 | 0.6794 | {'precision': 0.7130242825607064, 'recall': 0.7985166872682324, 'f1': 0.7533527696793003, 'number': 809} | {'precision': 0.2907801418439716, 'recall': 0.3445378151260504, 'f1': 0.3153846153846154, 'number': 119} | {'precision': 0.773286467486819, 'recall': 0.8262910798122066, 'f1': 0.7989105764866091, 'number': 1065} | 0.7172 | 0.7863 | 0.7501 | 0.8053 |
74
 
75
 
76
  ### Framework versions
logs/events.out.tfevents.1719547679.HCIDC-SV-DMZ-ORC-NODE02.2721004.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:07c8ff9d4b1f928b9d4663fc7c30938c29f402b0366aeb482259e19f7685216a
3
- size 13489
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0cda5e7a8d4c8f2d3727850f215480e2828d0183b76af88de76da814c99ae1a1
3
+ size 15988
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:b37ae670064d01f984c4967d3c57150617f25926304da24edbe300cb79305d1d
3
  size 450558212
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8cc6f66fac007bb5c98727e052518094fdc210ccbdd3c0a18ce36bd5be3e56ee
3
  size 450558212