Benedict-L commited on
Commit
41ab1f5
1 Parent(s): ac659cf

End of training

Browse files
README.md ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: microsoft/layoutlm-base-uncased
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - funsd
8
+ model-index:
9
+ - name: layoutlm-funsd2
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # layoutlm-funsd2
17
+
18
+ This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 0.6965
21
+ - Answer: {'precision': 0.7010869565217391, 'recall': 0.7972805933250927, 'f1': 0.746096009253904, 'number': 809}
22
+ - Header: {'precision': 0.3305785123966942, 'recall': 0.33613445378151263, 'f1': 0.33333333333333337, 'number': 119}
23
+ - Question: {'precision': 0.7692307692307693, 'recall': 0.8262910798122066, 'f1': 0.7967406066093254, 'number': 1065}
24
+ - Overall Precision: 0.7162
25
+ - Overall Recall: 0.7852
26
+ - Overall F1: 0.7492
27
+ - Overall Accuracy: 0.8006
28
+
29
+ ## Model description
30
+
31
+ More information needed
32
+
33
+ ## Intended uses & limitations
34
+
35
+ More information needed
36
+
37
+ ## Training and evaluation data
38
+
39
+ More information needed
40
+
41
+ ## Training procedure
42
+
43
+ ### Training hyperparameters
44
+
45
+ The following hyperparameters were used during training:
46
+ - learning_rate: 3e-05
47
+ - train_batch_size: 16
48
+ - eval_batch_size: 8
49
+ - seed: 42
50
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
+ - lr_scheduler_type: linear
52
+ - num_epochs: 15
53
+ - mixed_precision_training: Native AMP
54
+
55
+ ### Training results
56
+
57
+ | Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
58
+ |:-------------:|:-----:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
59
+ | 1.8343 | 1.0 | 10 | 1.5921 | {'precision': 0.006666666666666667, 'recall': 0.006180469715698393, 'f1': 0.006414368184733804, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.22067901234567902, 'recall': 0.13427230046948357, 'f1': 0.166958552247519, 'number': 1065} | 0.1059 | 0.0743 | 0.0873 | 0.3510 |
60
+ | 1.4828 | 2.0 | 20 | 1.2849 | {'precision': 0.2738799661876585, 'recall': 0.4004944375772559, 'f1': 0.32530120481927705, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.38058114812189936, 'recall': 0.504225352112676, 'f1': 0.43376413570274636, 'number': 1065} | 0.3314 | 0.4320 | 0.3751 | 0.5951 |
61
+ | 1.1444 | 3.0 | 30 | 0.9563 | {'precision': 0.4725897920604915, 'recall': 0.6180469715698393, 'f1': 0.5356186395286556, 'number': 809} | {'precision': 0.041666666666666664, 'recall': 0.01680672268907563, 'f1': 0.02395209580838323, 'number': 119} | {'precision': 0.5378020265003897, 'recall': 0.647887323943662, 'f1': 0.5877342419080069, 'number': 1065} | 0.4990 | 0.5981 | 0.5440 | 0.6955 |
62
+ | 0.8658 | 4.0 | 40 | 0.7885 | {'precision': 0.5757009345794393, 'recall': 0.761433868974042, 'f1': 0.6556679084619478, 'number': 809} | {'precision': 0.1388888888888889, 'recall': 0.08403361344537816, 'f1': 0.10471204188481677, 'number': 119} | {'precision': 0.6567299006323396, 'recall': 0.6826291079812207, 'f1': 0.6694290976058932, 'number': 1065} | 0.6016 | 0.6789 | 0.6379 | 0.7601 |
63
+ | 0.6833 | 5.0 | 50 | 0.7124 | {'precision': 0.64375, 'recall': 0.7639060568603214, 'f1': 0.6986998304126625, 'number': 809} | {'precision': 0.35, 'recall': 0.23529411764705882, 'f1': 0.28140703517587945, 'number': 119} | {'precision': 0.6729354047424366, 'recall': 0.7727699530516432, 'f1': 0.7194055944055944, 'number': 1065} | 0.6491 | 0.7371 | 0.6903 | 0.7810 |
64
+ | 0.5898 | 6.0 | 60 | 0.6874 | {'precision': 0.6227141482194418, 'recall': 0.799752781211372, 'f1': 0.7002164502164502, 'number': 809} | {'precision': 0.3411764705882353, 'recall': 0.24369747899159663, 'f1': 0.28431372549019607, 'number': 119} | {'precision': 0.7236492471213464, 'recall': 0.7671361502347418, 'f1': 0.7447584320875114, 'number': 1065} | 0.6627 | 0.7491 | 0.7033 | 0.7851 |
65
+ | 0.5126 | 7.0 | 70 | 0.6599 | {'precision': 0.6705632306057385, 'recall': 0.7799752781211372, 'f1': 0.7211428571428572, 'number': 809} | {'precision': 0.32673267326732675, 'recall': 0.2773109243697479, 'f1': 0.30000000000000004, 'number': 119} | {'precision': 0.7427821522309711, 'recall': 0.7971830985915493, 'f1': 0.7690217391304347, 'number': 1065} | 0.6924 | 0.7592 | 0.7243 | 0.7963 |
66
+ | 0.4534 | 8.0 | 80 | 0.6562 | {'precision': 0.670490093847758, 'recall': 0.7948084054388134, 'f1': 0.7273755656108597, 'number': 809} | {'precision': 0.2966101694915254, 'recall': 0.29411764705882354, 'f1': 0.2953586497890296, 'number': 119} | {'precision': 0.7476475620188195, 'recall': 0.8206572769953052, 'f1': 0.7824529991047449, 'number': 1065} | 0.6910 | 0.7787 | 0.7322 | 0.7954 |
67
+ | 0.3984 | 9.0 | 90 | 0.6561 | {'precision': 0.6838709677419355, 'recall': 0.7861557478368356, 'f1': 0.7314548591144335, 'number': 809} | {'precision': 0.3333333333333333, 'recall': 0.3025210084033613, 'f1': 0.3171806167400881, 'number': 119} | {'precision': 0.7555555555555555, 'recall': 0.8300469483568075, 'f1': 0.7910514541387024, 'number': 1065} | 0.7047 | 0.7807 | 0.7408 | 0.7986 |
68
+ | 0.3865 | 10.0 | 100 | 0.6673 | {'precision': 0.6877005347593583, 'recall': 0.7948084054388134, 'f1': 0.7373853211009175, 'number': 809} | {'precision': 0.31666666666666665, 'recall': 0.31932773109243695, 'f1': 0.3179916317991632, 'number': 119} | {'precision': 0.7613240418118467, 'recall': 0.8206572769953052, 'f1': 0.7898779936737461, 'number': 1065} | 0.7059 | 0.7802 | 0.7412 | 0.8019 |
69
+ | 0.3343 | 11.0 | 110 | 0.6761 | {'precision': 0.6853220696937699, 'recall': 0.8022249690976514, 'f1': 0.7391799544419134, 'number': 809} | {'precision': 0.336283185840708, 'recall': 0.31932773109243695, 'f1': 0.32758620689655166, 'number': 119} | {'precision': 0.7692307692307693, 'recall': 0.8262910798122066, 'f1': 0.7967406066093254, 'number': 1065} | 0.7110 | 0.7863 | 0.7467 | 0.7998 |
70
+ | 0.314 | 12.0 | 120 | 0.6772 | {'precision': 0.6989130434782609, 'recall': 0.7948084054388134, 'f1': 0.7437825332562175, 'number': 809} | {'precision': 0.34545454545454546, 'recall': 0.31932773109243695, 'f1': 0.3318777292576419, 'number': 119} | {'precision': 0.7698343504795118, 'recall': 0.8291079812206573, 'f1': 0.7983725135623869, 'number': 1065} | 0.7184 | 0.7847 | 0.7501 | 0.8053 |
71
+ | 0.3008 | 13.0 | 130 | 0.6878 | {'precision': 0.7048648648648649, 'recall': 0.8059332509270705, 'f1': 0.7520184544405998, 'number': 809} | {'precision': 0.33620689655172414, 'recall': 0.3277310924369748, 'f1': 0.33191489361702126, 'number': 119} | {'precision': 0.7689594356261023, 'recall': 0.8187793427230047, 'f1': 0.793087767166894, 'number': 1065} | 0.7186 | 0.7842 | 0.75 | 0.8033 |
72
+ | 0.2797 | 14.0 | 140 | 0.6948 | {'precision': 0.7027322404371584, 'recall': 0.7948084054388134, 'f1': 0.7459396751740139, 'number': 809} | {'precision': 0.31746031746031744, 'recall': 0.33613445378151263, 'f1': 0.32653061224489793, 'number': 119} | {'precision': 0.7661996497373029, 'recall': 0.8215962441314554, 'f1': 0.7929315813321249, 'number': 1065} | 0.7137 | 0.7817 | 0.7462 | 0.8017 |
73
+ | 0.2722 | 15.0 | 150 | 0.6965 | {'precision': 0.7010869565217391, 'recall': 0.7972805933250927, 'f1': 0.746096009253904, 'number': 809} | {'precision': 0.3305785123966942, 'recall': 0.33613445378151263, 'f1': 0.33333333333333337, 'number': 119} | {'precision': 0.7692307692307693, 'recall': 0.8262910798122066, 'f1': 0.7967406066093254, 'number': 1065} | 0.7162 | 0.7852 | 0.7492 | 0.8006 |
74
+
75
+
76
+ ### Framework versions
77
+
78
+ - Transformers 4.41.2
79
+ - Pytorch 2.3.1+cu121
80
+ - Datasets 2.19.2
81
+ - Tokenizers 0.19.1
logs/events.out.tfevents.1718873965.HCIDC-SV-DMZ-ORC-NODE02.3913563.1 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:2a475df1945472886bff7d25aa24441f300611cc400b0ffec40df6051ce0ed1d
3
- size 14919
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:27dc2284c7758dd061d2cbe32c1fc02f7f4e32c33b389eb435e6646b0c4deeab
3
+ size 15988
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:4c68c84b159e14d9f22b24c3e807f3bdaf643a4447e2b62e70c183a415c34ce8
3
  size 450558212
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:407269bdfb61d5284f437311ec92ed06d968ffc4785fba24f120193f68a95329
3
  size 450558212
preprocessor_config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_valid_processor_keys": [
3
+ "images",
4
+ "do_resize",
5
+ "size",
6
+ "resample",
7
+ "apply_ocr",
8
+ "ocr_lang",
9
+ "tesseract_config",
10
+ "return_tensors",
11
+ "data_format",
12
+ "input_data_format"
13
+ ],
14
+ "apply_ocr": true,
15
+ "do_resize": true,
16
+ "image_processor_type": "LayoutLMv2ImageProcessor",
17
+ "ocr_lang": null,
18
+ "processor_class": "LayoutLMv2Processor",
19
+ "resample": 2,
20
+ "size": {
21
+ "height": 224,
22
+ "width": 224
23
+ },
24
+ "tesseract_config": ""
25
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "additional_special_tokens": [],
45
+ "apply_ocr": false,
46
+ "clean_up_tokenization_spaces": true,
47
+ "cls_token": "[CLS]",
48
+ "cls_token_box": [
49
+ 0,
50
+ 0,
51
+ 0,
52
+ 0
53
+ ],
54
+ "do_basic_tokenize": true,
55
+ "do_lower_case": true,
56
+ "mask_token": "[MASK]",
57
+ "model_max_length": 512,
58
+ "never_split": null,
59
+ "only_label_first_subword": true,
60
+ "pad_token": "[PAD]",
61
+ "pad_token_box": [
62
+ 0,
63
+ 0,
64
+ 0,
65
+ 0
66
+ ],
67
+ "pad_token_label": -100,
68
+ "processor_class": "LayoutLMv2Processor",
69
+ "sep_token": "[SEP]",
70
+ "sep_token_box": [
71
+ 1000,
72
+ 1000,
73
+ 1000,
74
+ 1000
75
+ ],
76
+ "strip_accents": null,
77
+ "tokenize_chinese_chars": true,
78
+ "tokenizer_class": "LayoutLMv2Tokenizer",
79
+ "unk_token": "[UNK]"
80
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff