{ "name": "root", "metadata": { "timer_format_version": "0.1.0", "start_time_seconds": "1693143613", "python_version": "3.10.12 (main, Jun 11 2023, 05:26:28) [GCC 11.4.0]", "command_line_arguments": "/usr/local/bin/mlagents-learn ./config/ppo/PyramidsRND.yaml --env=./training-envs-executables/linux/Pyramids/Pyramids --run-id=Pyramids Training --no-graphics", "mlagents_version": "0.31.0.dev0", "mlagents_envs_version": "0.31.0.dev0", "communication_protocol_version": "1.5.0", "pytorch_version": "1.11.0+cu102", "numpy_version": "1.21.2", "end_time_seconds": "1693143634" }, "total": 21.15475512399985, "count": 1, "self": 0.49984941299999264, "children": { "run_training.setup": { "total": 0.042895430000044144, "count": 1, "self": 0.042895430000044144 }, "TrainerController.start_learning": { "total": 20.61201028099981, "count": 1, "self": 0.013737689008394227, "children": { "TrainerController._reset_env": { "total": 4.044778706999978, "count": 1, "self": 4.044778706999978 }, "TrainerController.advance": { "total": 16.425953053991634, "count": 640, "self": 0.013702364988603222, "children": { "env_step": { "total": 11.123035089000041, "count": 640, "self": 9.996673254995585, "children": { "SubprocessEnvManager._take_step": { "total": 1.115800430002082, "count": 640, "self": 0.05000306600231852, "children": { "TorchPolicy.evaluate": { "total": 1.0657973639997635, "count": 640, "self": 1.0657973639997635 } } }, "workers": { "total": 0.01056140400237382, "count": 640, "self": 0.0, "children": { "worker_root": { "total": 20.30936142199971, "count": 640, "is_parallel": true, "self": 11.47085148400447, "children": { "run_training.setup": { "total": 0.0, "count": 0, "is_parallel": true, "self": 0.0, "children": { "steps_from_proto": { "total": 0.001816815999973187, "count": 1, "is_parallel": true, "self": 0.0005389279999690189, "children": { "_process_rank_one_or_two_observation": { "total": 0.0012778880000041681, "count": 8, "is_parallel": true, "self": 0.0012778880000041681 } } }, "UnityEnvironment.step": { "total": 0.04700108600013664, "count": 1, "is_parallel": true, "self": 0.0005895250001231034, "children": { "UnityEnvironment._generate_step_input": { "total": 0.0004552360001071065, "count": 1, "is_parallel": true, "self": 0.0004552360001071065 }, "communicator.exchange": { "total": 0.04408474499996373, "count": 1, "is_parallel": true, "self": 0.04408474499996373 }, "steps_from_proto": { "total": 0.0018715799999426963, "count": 1, "is_parallel": true, "self": 0.0003789380004945997, "children": { "_process_rank_one_or_two_observation": { "total": 0.0014926419994480966, "count": 8, "is_parallel": true, "self": 0.0014926419994480966 } } } } } } }, "UnityEnvironment.step": { "total": 8.83850993799524, "count": 639, "is_parallel": true, "self": 0.344986266999058, "children": { "UnityEnvironment._generate_step_input": { "total": 0.2282079530007195, "count": 639, "is_parallel": true, "self": 0.2282079530007195 }, "communicator.exchange": { "total": 7.215852103997577, "count": 639, "is_parallel": true, "self": 7.215852103997577 }, "steps_from_proto": { "total": 1.0494636139978866, "count": 639, "is_parallel": true, "self": 0.21066155599714875, "children": { "_process_rank_one_or_two_observation": { "total": 0.8388020580007378, "count": 5112, "is_parallel": true, "self": 0.8388020580007378 } } } } } } } } } } }, "trainer_advance": { "total": 5.28921560000299, "count": 640, "self": 0.016532544001393035, "children": { "process_trajectory": { "total": 1.1407485360018654, "count": 640, "self": 1.1407485360018654 }, "_update_policy": { "total": 4.1319345199997315, "count": 2, "self": 2.682697626999925, "children": { "TorchPPOOptimizer.update": { "total": 1.4492368929998065, "count": 192, "self": 1.4492368929998065 } } } } } } }, "trainer_threads": { "total": 8.849999630911043e-07, "count": 1, "self": 8.849999630911043e-07 }, "TrainerController._save_models": { "total": 0.12753994599984253, "count": 1, "self": 0.0021616039998662018, "children": { "RLTrainer._checkpoint": { "total": 0.12537834199997633, "count": 1, "self": 0.12537834199997633 } } } } } } }