--- license: mit base_model: roberta-large tags: - generated_from_trainer datasets: - cosmos_qa metrics: - accuracy model-index: - name: roberta-large-finetuned-cosmos results: [] --- # roberta-large-finetuned-cosmos This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the cosmos_qa dataset. It achieves the following results on the evaluation set: - Loss: 1.3863 - Accuracy: 0.2533 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.39 | 1.0 | 12631 | 1.3863 | 0.2586 | | 1.3956 | 2.0 | 25262 | 1.3863 | 0.2563 | | 1.3902 | 3.0 | 37893 | 1.3863 | 0.2533 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.1+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2