--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-custom results: [] widget: - text: "2020/01/27 New water filter $210.00" example_title: "Item line 1" - text: "2024/04/04 supply and fit new timer knob and thermostat $03.35" example_title: "Item line 2" - text: "2024/04/01 callout 110.00" example_title: "Item line 3" --- # distilbert-base-uncased-custom This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0006 - Precision: 1.0 - Recall: 1.0 - F1: 1.0 - Accuracy: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:---:|:--------:| | No log | 1.0 | 50 | 0.0015 | 1.0 | 1.0 | 1.0 | 1.0 | | No log | 2.0 | 100 | 0.0007 | 1.0 | 1.0 | 1.0 | 1.0 | | No log | 3.0 | 150 | 0.0006 | 1.0 | 1.0 | 1.0 | 1.0 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.1+cu121 - Datasets 2.14.1 - Tokenizers 0.19.1