File size: 24,412 Bytes
6370773
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
import numpy as np
import pytest
from numpy.random import random
from numpy.testing import (
        assert_array_equal, assert_raises, assert_allclose, IS_WASM
        )
import threading
import queue


def fft1(x):
    L = len(x)
    phase = -2j * np.pi * (np.arange(L) / L)
    phase = np.arange(L).reshape(-1, 1) * phase
    return np.sum(x*np.exp(phase), axis=1)


class TestFFTShift:

    def test_fft_n(self):
        assert_raises(ValueError, np.fft.fft, [1, 2, 3], 0)


class TestFFT1D:

    def test_identity(self):
        maxlen = 512
        x = random(maxlen) + 1j*random(maxlen)
        xr = random(maxlen)
        for i in range(1, maxlen):
            assert_allclose(np.fft.ifft(np.fft.fft(x[0:i])), x[0:i],
                            atol=1e-12)
            assert_allclose(np.fft.irfft(np.fft.rfft(xr[0:i]), i),
                            xr[0:i], atol=1e-12)

    @pytest.mark.parametrize("dtype", [np.single, np.double, np.longdouble])
    def test_identity_long_short(self, dtype):
        # Test with explicitly given number of points, both for n
        # smaller and for n larger than the input size.
        maxlen = 16
        atol = 5 * np.spacing(np.array(1., dtype=dtype))
        x = random(maxlen).astype(dtype) + 1j*random(maxlen).astype(dtype)
        xx = np.concatenate([x, np.zeros_like(x)])
        xr = random(maxlen).astype(dtype)
        xxr = np.concatenate([xr, np.zeros_like(xr)])
        for i in range(1, maxlen*2):
            check_c = np.fft.ifft(np.fft.fft(x, n=i), n=i)
            assert check_c.real.dtype == dtype
            assert_allclose(check_c, xx[0:i], atol=atol, rtol=0)
            check_r = np.fft.irfft(np.fft.rfft(xr, n=i), n=i)
            assert check_r.dtype == dtype
            assert_allclose(check_r, xxr[0:i], atol=atol, rtol=0)

    @pytest.mark.parametrize("dtype", [np.single, np.double, np.longdouble])
    def test_identity_long_short_reversed(self, dtype):
        # Also test explicitly given number of points in reversed order.
        maxlen = 16
        atol = 5 * np.spacing(np.array(1., dtype=dtype))
        x = random(maxlen).astype(dtype) + 1j*random(maxlen).astype(dtype)
        xx = np.concatenate([x, np.zeros_like(x)])
        for i in range(1, maxlen*2):
            check_via_c = np.fft.fft(np.fft.ifft(x, n=i), n=i)
            assert check_via_c.dtype == x.dtype
            assert_allclose(check_via_c, xx[0:i], atol=atol, rtol=0)
            # For irfft, we can neither recover the imaginary part of
            # the first element, nor the imaginary part of the last
            # element if npts is even.  So, set to 0 for the comparison.
            y = x.copy()
            n = i // 2 + 1
            y.imag[0] = 0
            if i % 2 == 0:
                y.imag[n-1:] = 0
            yy = np.concatenate([y, np.zeros_like(y)])
            check_via_r = np.fft.rfft(np.fft.irfft(x, n=i), n=i)
            assert check_via_r.dtype == x.dtype
            assert_allclose(check_via_r, yy[0:n], atol=atol, rtol=0)

    def test_fft(self):
        x = random(30) + 1j*random(30)
        assert_allclose(fft1(x), np.fft.fft(x), atol=1e-6)
        assert_allclose(fft1(x), np.fft.fft(x, norm="backward"), atol=1e-6)
        assert_allclose(fft1(x) / np.sqrt(30),
                        np.fft.fft(x, norm="ortho"), atol=1e-6)
        assert_allclose(fft1(x) / 30.,
                        np.fft.fft(x, norm="forward"), atol=1e-6)

    @pytest.mark.parametrize("axis", (0, 1))
    @pytest.mark.parametrize("dtype", (complex, float))
    @pytest.mark.parametrize("transpose", (True, False))
    def test_fft_out_argument(self, dtype, transpose, axis):
        def zeros_like(x):
            if transpose:
                return np.zeros_like(x.T).T
            else:
                return np.zeros_like(x)

        # tests below only test the out parameter
        if dtype is complex:
            y = random((10, 20)) + 1j*random((10, 20))
            fft, ifft = np.fft.fft, np.fft.ifft
        else:
            y = random((10, 20))
            fft, ifft = np.fft.rfft, np.fft.irfft

        expected = fft(y, axis=axis)
        out = zeros_like(expected)
        result = fft(y, out=out, axis=axis)
        assert result is out
        assert_array_equal(result, expected)

        expected2 = ifft(expected, axis=axis)
        out2 = out if dtype is complex else zeros_like(expected2)
        result2 = ifft(out, out=out2, axis=axis)
        assert result2 is out2
        assert_array_equal(result2, expected2)

    @pytest.mark.parametrize("axis", [0, 1])
    def test_fft_inplace_out(self, axis):
        # Test some weirder in-place combinations
        y = random((20, 20)) + 1j*random((20, 20))
        # Fully in-place.
        y1 = y.copy()
        expected1 = np.fft.fft(y1, axis=axis)
        result1 = np.fft.fft(y1, axis=axis, out=y1)
        assert result1 is y1
        assert_array_equal(result1, expected1)
        # In-place of part of the array; rest should be unchanged.
        y2 = y.copy()
        out2 = y2[:10] if axis == 0 else y2[:, :10]
        expected2 = np.fft.fft(y2, n=10, axis=axis)
        result2 = np.fft.fft(y2, n=10, axis=axis, out=out2)
        assert result2 is out2
        assert_array_equal(result2, expected2)
        if axis == 0:
            assert_array_equal(y2[10:], y[10:])
        else:
            assert_array_equal(y2[:, 10:], y[:, 10:])
        # In-place of another part of the array.
        y3 = y.copy()
        y3_sel = y3[5:] if axis == 0 else y3[:, 5:]
        out3 = y3[5:15] if axis == 0 else y3[:, 5:15]
        expected3 = np.fft.fft(y3_sel, n=10, axis=axis)
        result3 = np.fft.fft(y3_sel, n=10, axis=axis, out=out3)
        assert result3 is out3
        assert_array_equal(result3, expected3)
        if axis == 0:
            assert_array_equal(y3[:5], y[:5])
            assert_array_equal(y3[15:], y[15:])
        else:
            assert_array_equal(y3[:, :5], y[:, :5])
            assert_array_equal(y3[:, 15:], y[:, 15:])
        # In-place with n > nin; rest should be unchanged.
        y4 = y.copy()
        y4_sel = y4[:10] if axis == 0 else y4[:, :10]
        out4 = y4[:15] if axis == 0 else y4[:, :15]
        expected4 = np.fft.fft(y4_sel, n=15, axis=axis)
        result4 = np.fft.fft(y4_sel, n=15, axis=axis, out=out4)
        assert result4 is out4
        assert_array_equal(result4, expected4)
        if axis == 0:
            assert_array_equal(y4[15:], y[15:])
        else:
            assert_array_equal(y4[:, 15:], y[:, 15:])
        # Overwrite in a transpose.
        y5 = y.copy()
        out5 = y5.T
        result5 = np.fft.fft(y5, axis=axis, out=out5)
        assert result5 is out5
        assert_array_equal(result5, expected1)
        # Reverse strides.
        y6 = y.copy()
        out6 = y6[::-1] if axis == 0 else y6[:, ::-1]
        result6 = np.fft.fft(y6, axis=axis, out=out6)
        assert result6 is out6
        assert_array_equal(result6, expected1)

    def test_fft_bad_out(self):
        x = np.arange(30.)
        with pytest.raises(TypeError, match="must be of ArrayType"):
            np.fft.fft(x, out="")
        with pytest.raises(ValueError, match="has wrong shape"):
            np.fft.fft(x, out=np.zeros_like(x).reshape(5, -1))
        with pytest.raises(TypeError, match="Cannot cast"):
            np.fft.fft(x, out=np.zeros_like(x, dtype=float))

    @pytest.mark.parametrize('norm', (None, 'backward', 'ortho', 'forward'))
    def test_ifft(self, norm):
        x = random(30) + 1j*random(30)
        assert_allclose(
            x, np.fft.ifft(np.fft.fft(x, norm=norm), norm=norm),
            atol=1e-6)
        # Ensure we get the correct error message
        with pytest.raises(ValueError,
                           match='Invalid number of FFT data points'):
            np.fft.ifft([], norm=norm)

    def test_fft2(self):
        x = random((30, 20)) + 1j*random((30, 20))
        assert_allclose(np.fft.fft(np.fft.fft(x, axis=1), axis=0),
                        np.fft.fft2(x), atol=1e-6)
        assert_allclose(np.fft.fft2(x),
                        np.fft.fft2(x, norm="backward"), atol=1e-6)
        assert_allclose(np.fft.fft2(x) / np.sqrt(30 * 20),
                        np.fft.fft2(x, norm="ortho"), atol=1e-6)
        assert_allclose(np.fft.fft2(x) / (30. * 20.),
                        np.fft.fft2(x, norm="forward"), atol=1e-6)

    def test_ifft2(self):
        x = random((30, 20)) + 1j*random((30, 20))
        assert_allclose(np.fft.ifft(np.fft.ifft(x, axis=1), axis=0),
                        np.fft.ifft2(x), atol=1e-6)
        assert_allclose(np.fft.ifft2(x),
                        np.fft.ifft2(x, norm="backward"), atol=1e-6)
        assert_allclose(np.fft.ifft2(x) * np.sqrt(30 * 20),
                        np.fft.ifft2(x, norm="ortho"), atol=1e-6)
        assert_allclose(np.fft.ifft2(x) * (30. * 20.),
                        np.fft.ifft2(x, norm="forward"), atol=1e-6)

    def test_fftn(self):
        x = random((30, 20, 10)) + 1j*random((30, 20, 10))
        assert_allclose(
            np.fft.fft(np.fft.fft(np.fft.fft(x, axis=2), axis=1), axis=0),
            np.fft.fftn(x), atol=1e-6)
        assert_allclose(np.fft.fftn(x),
                        np.fft.fftn(x, norm="backward"), atol=1e-6)
        assert_allclose(np.fft.fftn(x) / np.sqrt(30 * 20 * 10),
                        np.fft.fftn(x, norm="ortho"), atol=1e-6)
        assert_allclose(np.fft.fftn(x) / (30. * 20. * 10.),
                        np.fft.fftn(x, norm="forward"), atol=1e-6)

    def test_ifftn(self):
        x = random((30, 20, 10)) + 1j*random((30, 20, 10))
        assert_allclose(
            np.fft.ifft(np.fft.ifft(np.fft.ifft(x, axis=2), axis=1), axis=0),
            np.fft.ifftn(x), atol=1e-6)
        assert_allclose(np.fft.ifftn(x),
                        np.fft.ifftn(x, norm="backward"), atol=1e-6)
        assert_allclose(np.fft.ifftn(x) * np.sqrt(30 * 20 * 10),
                        np.fft.ifftn(x, norm="ortho"), atol=1e-6)
        assert_allclose(np.fft.ifftn(x) * (30. * 20. * 10.),
                        np.fft.ifftn(x, norm="forward"), atol=1e-6)

    def test_rfft(self):
        x = random(30)
        for n in [x.size, 2*x.size]:
            for norm in [None, 'backward', 'ortho', 'forward']:
                assert_allclose(
                    np.fft.fft(x, n=n, norm=norm)[:(n//2 + 1)],
                    np.fft.rfft(x, n=n, norm=norm), atol=1e-6)
            assert_allclose(
                np.fft.rfft(x, n=n),
                np.fft.rfft(x, n=n, norm="backward"), atol=1e-6)
            assert_allclose(
                np.fft.rfft(x, n=n) / np.sqrt(n),
                np.fft.rfft(x, n=n, norm="ortho"), atol=1e-6)
            assert_allclose(
                np.fft.rfft(x, n=n) / n,
                np.fft.rfft(x, n=n, norm="forward"), atol=1e-6)

    def test_rfft_even(self):
        x = np.arange(8)
        n = 4
        y = np.fft.rfft(x, n)
        assert_allclose(y, np.fft.fft(x[:n])[:n//2 + 1], rtol=1e-14)

    def test_rfft_odd(self):
        x = np.array([1, 0, 2, 3, -3])
        y = np.fft.rfft(x)
        assert_allclose(y, np.fft.fft(x)[:3], rtol=1e-14)

    def test_irfft(self):
        x = random(30)
        assert_allclose(x, np.fft.irfft(np.fft.rfft(x)), atol=1e-6)
        assert_allclose(x, np.fft.irfft(np.fft.rfft(x, norm="backward"),
                        norm="backward"), atol=1e-6)
        assert_allclose(x, np.fft.irfft(np.fft.rfft(x, norm="ortho"),
                        norm="ortho"), atol=1e-6)
        assert_allclose(x, np.fft.irfft(np.fft.rfft(x, norm="forward"),
                        norm="forward"), atol=1e-6)

    def test_rfft2(self):
        x = random((30, 20))
        assert_allclose(np.fft.fft2(x)[:, :11], np.fft.rfft2(x), atol=1e-6)
        assert_allclose(np.fft.rfft2(x),
                        np.fft.rfft2(x, norm="backward"), atol=1e-6)
        assert_allclose(np.fft.rfft2(x) / np.sqrt(30 * 20),
                        np.fft.rfft2(x, norm="ortho"), atol=1e-6)
        assert_allclose(np.fft.rfft2(x) / (30. * 20.),
                        np.fft.rfft2(x, norm="forward"), atol=1e-6)

    def test_irfft2(self):
        x = random((30, 20))
        assert_allclose(x, np.fft.irfft2(np.fft.rfft2(x)), atol=1e-6)
        assert_allclose(x, np.fft.irfft2(np.fft.rfft2(x, norm="backward"),
                        norm="backward"), atol=1e-6)
        assert_allclose(x, np.fft.irfft2(np.fft.rfft2(x, norm="ortho"),
                        norm="ortho"), atol=1e-6)
        assert_allclose(x, np.fft.irfft2(np.fft.rfft2(x, norm="forward"),
                        norm="forward"), atol=1e-6)

    def test_rfftn(self):
        x = random((30, 20, 10))
        assert_allclose(np.fft.fftn(x)[:, :, :6], np.fft.rfftn(x), atol=1e-6)
        assert_allclose(np.fft.rfftn(x),
                        np.fft.rfftn(x, norm="backward"), atol=1e-6)
        assert_allclose(np.fft.rfftn(x) / np.sqrt(30 * 20 * 10),
                        np.fft.rfftn(x, norm="ortho"), atol=1e-6)
        assert_allclose(np.fft.rfftn(x) / (30. * 20. * 10.),
                        np.fft.rfftn(x, norm="forward"), atol=1e-6)
        # Regression test for gh-27159
        x = np.ones((2, 3))
        result = np.fft.rfftn(x, axes=(0, 0, 1), s=(10, 20, 40))
        assert result.shape == (10, 21)
        expected = np.fft.fft(np.fft.fft(np.fft.rfft(x, axis=1, n=40),
                            axis=0, n=20), axis=0, n=10)
        assert expected.shape == (10, 21)
        assert_allclose(result, expected, atol=1e-6)

    def test_irfftn(self):
        x = random((30, 20, 10))
        assert_allclose(x, np.fft.irfftn(np.fft.rfftn(x)), atol=1e-6)
        assert_allclose(x, np.fft.irfftn(np.fft.rfftn(x, norm="backward"),
                        norm="backward"), atol=1e-6)
        assert_allclose(x, np.fft.irfftn(np.fft.rfftn(x, norm="ortho"),
                        norm="ortho"), atol=1e-6)
        assert_allclose(x, np.fft.irfftn(np.fft.rfftn(x, norm="forward"),
                        norm="forward"), atol=1e-6)

    def test_hfft(self):
        x = random(14) + 1j*random(14)
        x_herm = np.concatenate((random(1), x, random(1)))
        x = np.concatenate((x_herm, x[::-1].conj()))
        assert_allclose(np.fft.fft(x), np.fft.hfft(x_herm), atol=1e-6)
        assert_allclose(np.fft.hfft(x_herm),
                        np.fft.hfft(x_herm, norm="backward"), atol=1e-6)
        assert_allclose(np.fft.hfft(x_herm) / np.sqrt(30),
                        np.fft.hfft(x_herm, norm="ortho"), atol=1e-6)
        assert_allclose(np.fft.hfft(x_herm) / 30.,
                        np.fft.hfft(x_herm, norm="forward"), atol=1e-6)

    def test_ihfft(self):
        x = random(14) + 1j*random(14)
        x_herm = np.concatenate((random(1), x, random(1)))
        x = np.concatenate((x_herm, x[::-1].conj()))
        assert_allclose(x_herm, np.fft.ihfft(np.fft.hfft(x_herm)), atol=1e-6)
        assert_allclose(x_herm, np.fft.ihfft(np.fft.hfft(x_herm,
                        norm="backward"), norm="backward"), atol=1e-6)
        assert_allclose(x_herm, np.fft.ihfft(np.fft.hfft(x_herm,
                        norm="ortho"), norm="ortho"), atol=1e-6)
        assert_allclose(x_herm, np.fft.ihfft(np.fft.hfft(x_herm,
                        norm="forward"), norm="forward"), atol=1e-6)

    @pytest.mark.parametrize("op", [np.fft.fftn, np.fft.ifftn,
                                    np.fft.rfftn, np.fft.irfftn])
    def test_axes(self, op):
        x = random((30, 20, 10))
        axes = [(0, 1, 2), (0, 2, 1), (1, 0, 2), (1, 2, 0), (2, 0, 1), (2, 1, 0)]
        for a in axes:
            op_tr = op(np.transpose(x, a))
            tr_op = np.transpose(op(x, axes=a), a)
            assert_allclose(op_tr, tr_op, atol=1e-6)

    @pytest.mark.parametrize("op", [np.fft.fftn, np.fft.ifftn,
                                    np.fft.fft2, np.fft.ifft2])
    def test_s_negative_1(self, op):
        x = np.arange(100).reshape(10, 10)
        # should use the whole input array along the first axis
        assert op(x, s=(-1, 5), axes=(0, 1)).shape == (10, 5)

    @pytest.mark.parametrize("op", [np.fft.fftn, np.fft.ifftn,
                                    np.fft.rfftn, np.fft.irfftn])
    def test_s_axes_none(self, op):
        x = np.arange(100).reshape(10, 10)
        with pytest.warns(match='`axes` should not be `None` if `s`'):
            op(x, s=(-1, 5))

    @pytest.mark.parametrize("op", [np.fft.fft2, np.fft.ifft2])
    def test_s_axes_none_2D(self, op):
        x = np.arange(100).reshape(10, 10)
        with pytest.warns(match='`axes` should not be `None` if `s`'):
            op(x, s=(-1, 5), axes=None)

    @pytest.mark.parametrize("op", [np.fft.fftn, np.fft.ifftn,
                                    np.fft.rfftn, np.fft.irfftn,
                                    np.fft.fft2, np.fft.ifft2])
    def test_s_contains_none(self, op):
        x = random((30, 20, 10))
        with pytest.warns(match='array containing `None` values to `s`'):
            op(x, s=(10, None, 10), axes=(0, 1, 2))

    def test_all_1d_norm_preserving(self):
        # verify that round-trip transforms are norm-preserving
        x = random(30)
        x_norm = np.linalg.norm(x)
        n = x.size * 2
        func_pairs = [(np.fft.fft, np.fft.ifft),
                      (np.fft.rfft, np.fft.irfft),
                      # hfft: order so the first function takes x.size samples
                      #       (necessary for comparison to x_norm above)
                      (np.fft.ihfft, np.fft.hfft),
                      ]
        for forw, back in func_pairs:
            for n in [x.size, 2*x.size]:
                for norm in [None, 'backward', 'ortho', 'forward']:
                    tmp = forw(x, n=n, norm=norm)
                    tmp = back(tmp, n=n, norm=norm)
                    assert_allclose(x_norm,
                                    np.linalg.norm(tmp), atol=1e-6)

    @pytest.mark.parametrize("axes", [(0, 1), (0, 2), None])
    @pytest.mark.parametrize("dtype", (complex, float))
    @pytest.mark.parametrize("transpose", (True, False))
    def test_fftn_out_argument(self, dtype, transpose, axes):
        def zeros_like(x):
            if transpose:
                return np.zeros_like(x.T).T
            else:
                return np.zeros_like(x)

        # tests below only test the out parameter
        if dtype is complex:
            x = random((10, 5, 6)) + 1j*random((10, 5, 6))
            fft, ifft = np.fft.fftn, np.fft.ifftn
        else:
            x = random((10, 5, 6))
            fft, ifft = np.fft.rfftn, np.fft.irfftn

        expected = fft(x, axes=axes)
        out = zeros_like(expected)
        result = fft(x, out=out, axes=axes)
        assert result is out
        assert_array_equal(result, expected)

        expected2 = ifft(expected, axes=axes)
        out2 = out if dtype is complex else zeros_like(expected2)
        result2 = ifft(out, out=out2, axes=axes)
        assert result2 is out2
        assert_array_equal(result2, expected2)

    @pytest.mark.parametrize("fft", [np.fft.fftn, np.fft.ifftn, np.fft.rfftn])
    def test_fftn_out_and_s_interaction(self, fft):
        # With s, shape varies, so generally one cannot pass in out.
        if fft is np.fft.rfftn:
            x = random((10, 5, 6))
        else:
            x = random((10, 5, 6)) + 1j*random((10, 5, 6))
        with pytest.raises(ValueError, match="has wrong shape"):
            fft(x, out=np.zeros_like(x), s=(3, 3, 3), axes=(0, 1, 2))
        # Except on the first axis done (which is the last of axes).
        s = (10, 5, 5)
        expected = fft(x, s=s, axes=(0, 1, 2))
        out = np.zeros_like(expected)
        result = fft(x, s=s, axes=(0, 1, 2), out=out)
        assert result is out
        assert_array_equal(result, expected)

    @pytest.mark.parametrize("s", [(9, 5, 5), (3, 3, 3)])
    def test_irfftn_out_and_s_interaction(self, s):
        # Since for irfftn, the output is real and thus cannot be used for
        # intermediate steps, it should always work.
        x = random((9, 5, 6, 2)) + 1j*random((9, 5, 6, 2))
        expected = np.fft.irfftn(x, s=s, axes=(0, 1, 2))
        out = np.zeros_like(expected)
        result = np.fft.irfftn(x, s=s, axes=(0, 1, 2), out=out)
        assert result is out
        assert_array_equal(result, expected)


@pytest.mark.parametrize(
        "dtype",
        [np.float32, np.float64, np.complex64, np.complex128])
@pytest.mark.parametrize("order", ["F", 'non-contiguous'])
@pytest.mark.parametrize(
        "fft",
        [np.fft.fft, np.fft.fft2, np.fft.fftn,
         np.fft.ifft, np.fft.ifft2, np.fft.ifftn])
def test_fft_with_order(dtype, order, fft):
    # Check that FFT/IFFT produces identical results for C, Fortran and
    # non contiguous arrays
    rng = np.random.RandomState(42)
    X = rng.rand(8, 7, 13).astype(dtype, copy=False)
    # See discussion in pull/14178
    _tol = 8.0 * np.sqrt(np.log2(X.size)) * np.finfo(X.dtype).eps
    if order == 'F':
        Y = np.asfortranarray(X)
    else:
        # Make a non contiguous array
        Y = X[::-1]
        X = np.ascontiguousarray(X[::-1])

    if fft.__name__.endswith('fft'):
        for axis in range(3):
            X_res = fft(X, axis=axis)
            Y_res = fft(Y, axis=axis)
            assert_allclose(X_res, Y_res, atol=_tol, rtol=_tol)
    elif fft.__name__.endswith(('fft2', 'fftn')):
        axes = [(0, 1), (1, 2), (0, 2)]
        if fft.__name__.endswith('fftn'):
            axes.extend([(0,), (1,), (2,), None])
        for ax in axes:
            X_res = fft(X, axes=ax)
            Y_res = fft(Y, axes=ax)
            assert_allclose(X_res, Y_res, atol=_tol, rtol=_tol)
    else:
        raise ValueError()


@pytest.mark.parametrize("order", ["F", "C"])
@pytest.mark.parametrize("n", [None, 7, 12])
def test_fft_output_order(order, n):
    rng = np.random.RandomState(42)
    x = rng.rand(10)
    x = np.asarray(x, dtype=np.complex64, order=order)
    res = np.fft.fft(x, n=n)
    assert res.flags.c_contiguous == x.flags.c_contiguous
    assert res.flags.f_contiguous == x.flags.f_contiguous

@pytest.mark.skipif(IS_WASM, reason="Cannot start thread")
class TestFFTThreadSafe:
    threads = 16
    input_shape = (800, 200)

    def _test_mtsame(self, func, *args):
        def worker(args, q):
            q.put(func(*args))

        q = queue.Queue()
        expected = func(*args)

        # Spin off a bunch of threads to call the same function simultaneously
        t = [threading.Thread(target=worker, args=(args, q))
             for i in range(self.threads)]
        [x.start() for x in t]

        [x.join() for x in t]
        # Make sure all threads returned the correct value
        for i in range(self.threads):
            assert_array_equal(q.get(timeout=5), expected,
                'Function returned wrong value in multithreaded context')

    def test_fft(self):
        a = np.ones(self.input_shape) * 1+0j
        self._test_mtsame(np.fft.fft, a)

    def test_ifft(self):
        a = np.ones(self.input_shape) * 1+0j
        self._test_mtsame(np.fft.ifft, a)

    def test_rfft(self):
        a = np.ones(self.input_shape)
        self._test_mtsame(np.fft.rfft, a)

    def test_irfft(self):
        a = np.ones(self.input_shape) * 1+0j
        self._test_mtsame(np.fft.irfft, a)


def test_irfft_with_n_1_regression():
    # Regression test for gh-25661
    x = np.arange(10)
    np.fft.irfft(x, n=1)
    np.fft.hfft(x, n=1)
    np.fft.irfft(np.array([0], complex), n=10)


def test_irfft_with_n_large_regression():
    # Regression test for gh-25679
    x = np.arange(5) * (1 + 1j)
    result = np.fft.hfft(x, n=10)
    expected = np.array([20., 9.91628173, -11.8819096, 7.1048486,
                         -6.62459848, 4., -3.37540152, -0.16057669,
                         1.8819096, -20.86055364])
    assert_allclose(result, expected)


@pytest.mark.parametrize("fft", [
    np.fft.fft, np.fft.ifft, np.fft.rfft, np.fft.irfft
])
@pytest.mark.parametrize("data", [
    np.array([False, True, False]),
    np.arange(10, dtype=np.uint8),
    np.arange(5, dtype=np.int16),
])
def test_fft_with_integer_or_bool_input(data, fft):
    # Regression test for gh-25819
    result = fft(data)
    float_data = data.astype(np.result_type(data, 1.))
    expected = fft(float_data)
    assert_array_equal(result, expected)