File size: 39,892 Bytes
6370773
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
"""
Abstract base class for the various polynomial Classes.

The ABCPolyBase class provides the methods needed to implement the common API
for the various polynomial classes. It operates as a mixin, but uses the
abc module from the stdlib, hence it is only available for Python >= 2.6.

"""
import os
import abc
import numbers
from typing import Callable

import numpy as np
from . import polyutils as pu

__all__ = ['ABCPolyBase']

class ABCPolyBase(abc.ABC):
    """An abstract base class for immutable series classes.

    ABCPolyBase provides the standard Python numerical methods
    '+', '-', '*', '//', '%', 'divmod', '**', and '()' along with the
    methods listed below.

    .. versionadded:: 1.9.0

    Parameters
    ----------
    coef : array_like
        Series coefficients in order of increasing degree, i.e.,
        ``(1, 2, 3)`` gives ``1*P_0(x) + 2*P_1(x) + 3*P_2(x)``, where
        ``P_i`` is the basis polynomials of degree ``i``.
    domain : (2,) array_like, optional
        Domain to use. The interval ``[domain[0], domain[1]]`` is mapped
        to the interval ``[window[0], window[1]]`` by shifting and scaling.
        The default value is the derived class domain.
    window : (2,) array_like, optional
        Window, see domain for its use. The default value is the
        derived class window.
    symbol : str, optional
        Symbol used to represent the independent variable in string 
        representations of the polynomial expression, e.g. for printing.
        The symbol must be a valid Python identifier. Default value is 'x'.

        .. versionadded:: 1.24

    Attributes
    ----------
    coef : (N,) ndarray
        Series coefficients in order of increasing degree.
    domain : (2,) ndarray
        Domain that is mapped to window.
    window : (2,) ndarray
        Window that domain is mapped to.
    symbol : str
        Symbol representing the independent variable.

    Class Attributes
    ----------------
    maxpower : int
        Maximum power allowed, i.e., the largest number ``n`` such that
        ``p(x)**n`` is allowed. This is to limit runaway polynomial size.
    domain : (2,) ndarray
        Default domain of the class.
    window : (2,) ndarray
        Default window of the class.

    """

    # Not hashable
    __hash__ = None

    # Opt out of numpy ufuncs and Python ops with ndarray subclasses.
    __array_ufunc__ = None

    # Limit runaway size. T_n^m has degree n*m
    maxpower = 100

    # Unicode character mappings for improved __str__
    _superscript_mapping = str.maketrans({
        "0": "⁰",
        "1": "¹",
        "2": "²",
        "3": "³",
        "4": "⁴",
        "5": "⁵",
        "6": "⁶",
        "7": "⁷",
        "8": "⁸",
        "9": "⁹"
    })
    _subscript_mapping = str.maketrans({
        "0": "₀",
        "1": "₁",
        "2": "₂",
        "3": "₃",
        "4": "₄",
        "5": "₅",
        "6": "₆",
        "7": "₇",
        "8": "₈",
        "9": "₉"
    })
    # Some fonts don't support full unicode character ranges necessary for
    # the full set of superscripts and subscripts, including common/default
    # fonts in Windows shells/terminals. Therefore, default to ascii-only
    # printing on windows.
    _use_unicode = not os.name == 'nt'

    @property
    def symbol(self):
        return self._symbol

    @property
    @abc.abstractmethod
    def domain(self):
        pass

    @property
    @abc.abstractmethod
    def window(self):
        pass

    @property
    @abc.abstractmethod
    def basis_name(self):
        pass

    @staticmethod
    @abc.abstractmethod
    def _add(c1, c2):
        pass

    @staticmethod
    @abc.abstractmethod
    def _sub(c1, c2):
        pass

    @staticmethod
    @abc.abstractmethod
    def _mul(c1, c2):
        pass

    @staticmethod
    @abc.abstractmethod
    def _div(c1, c2):
        pass

    @staticmethod
    @abc.abstractmethod
    def _pow(c, pow, maxpower=None):
        pass

    @staticmethod
    @abc.abstractmethod
    def _val(x, c):
        pass

    @staticmethod
    @abc.abstractmethod
    def _int(c, m, k, lbnd, scl):
        pass

    @staticmethod
    @abc.abstractmethod
    def _der(c, m, scl):
        pass

    @staticmethod
    @abc.abstractmethod
    def _fit(x, y, deg, rcond, full):
        pass

    @staticmethod
    @abc.abstractmethod
    def _line(off, scl):
        pass

    @staticmethod
    @abc.abstractmethod
    def _roots(c):
        pass

    @staticmethod
    @abc.abstractmethod
    def _fromroots(r):
        pass

    def has_samecoef(self, other):
        """Check if coefficients match.

        .. versionadded:: 1.6.0

        Parameters
        ----------
        other : class instance
            The other class must have the ``coef`` attribute.

        Returns
        -------
        bool : boolean
            True if the coefficients are the same, False otherwise.

        """
        if len(self.coef) != len(other.coef):
            return False
        elif not np.all(self.coef == other.coef):
            return False
        else:
            return True

    def has_samedomain(self, other):
        """Check if domains match.

        .. versionadded:: 1.6.0

        Parameters
        ----------
        other : class instance
            The other class must have the ``domain`` attribute.

        Returns
        -------
        bool : boolean
            True if the domains are the same, False otherwise.

        """
        return np.all(self.domain == other.domain)

    def has_samewindow(self, other):
        """Check if windows match.

        .. versionadded:: 1.6.0

        Parameters
        ----------
        other : class instance
            The other class must have the ``window`` attribute.

        Returns
        -------
        bool : boolean
            True if the windows are the same, False otherwise.

        """
        return np.all(self.window == other.window)

    def has_sametype(self, other):
        """Check if types match.

        .. versionadded:: 1.7.0

        Parameters
        ----------
        other : object
            Class instance.

        Returns
        -------
        bool : boolean
            True if other is same class as self

        """
        return isinstance(other, self.__class__)

    def _get_coefficients(self, other):
        """Interpret other as polynomial coefficients.

        The `other` argument is checked to see if it is of the same
        class as self with identical domain and window. If so,
        return its coefficients, otherwise return `other`.

        .. versionadded:: 1.9.0

        Parameters
        ----------
        other : anything
            Object to be checked.

        Returns
        -------
        coef
            The coefficients of`other` if it is a compatible instance,
            of ABCPolyBase, otherwise `other`.

        Raises
        ------
        TypeError
            When `other` is an incompatible instance of ABCPolyBase.

        """
        if isinstance(other, ABCPolyBase):
            if not isinstance(other, self.__class__):
                raise TypeError("Polynomial types differ")
            elif not np.all(self.domain == other.domain):
                raise TypeError("Domains differ")
            elif not np.all(self.window == other.window):
                raise TypeError("Windows differ")
            elif self.symbol != other.symbol:
                raise ValueError("Polynomial symbols differ")
            return other.coef
        return other

    def __init__(self, coef, domain=None, window=None, symbol='x'):
        [coef] = pu.as_series([coef], trim=False)
        self.coef = coef

        if domain is not None:
            [domain] = pu.as_series([domain], trim=False)
            if len(domain) != 2:
                raise ValueError("Domain has wrong number of elements.")
            self.domain = domain

        if window is not None:
            [window] = pu.as_series([window], trim=False)
            if len(window) != 2:
                raise ValueError("Window has wrong number of elements.")
            self.window = window

        # Validation for symbol
        try:
            if not symbol.isidentifier():
                raise ValueError(
                    "Symbol string must be a valid Python identifier"
                )
        # If a user passes in something other than a string, the above
        # results in an AttributeError. Catch this and raise a more
        # informative exception
        except AttributeError:
            raise TypeError("Symbol must be a non-empty string")

        self._symbol = symbol

    def __repr__(self):
        coef = repr(self.coef)[6:-1]
        domain = repr(self.domain)[6:-1]
        window = repr(self.window)[6:-1]
        name = self.__class__.__name__
        return (f"{name}({coef}, domain={domain}, window={window}, "
                f"symbol='{self.symbol}')")

    def __format__(self, fmt_str):
        if fmt_str == '':
            return self.__str__()
        if fmt_str not in ('ascii', 'unicode'):
            raise ValueError(
                f"Unsupported format string '{fmt_str}' passed to "
                f"{self.__class__}.__format__. Valid options are "
                f"'ascii' and 'unicode'"
            )
        if fmt_str == 'ascii':
            return self._generate_string(self._str_term_ascii)
        return self._generate_string(self._str_term_unicode)

    def __str__(self):
        if self._use_unicode:
            return self._generate_string(self._str_term_unicode)
        return self._generate_string(self._str_term_ascii)

    def _generate_string(self, term_method):
        """
        Generate the full string representation of the polynomial, using
        ``term_method`` to generate each polynomial term.
        """
        # Get configuration for line breaks
        linewidth = np.get_printoptions().get('linewidth', 75)
        if linewidth < 1:
            linewidth = 1
        out = pu.format_float(self.coef[0])

        off, scale = self.mapparms()

        scaled_symbol, needs_parens = self._format_term(pu.format_float,
                                                        off, scale)
        if needs_parens:
            scaled_symbol = '(' + scaled_symbol + ')'

        for i, coef in enumerate(self.coef[1:]):
            out += " "
            power = str(i + 1)
            # Polynomial coefficient
            # The coefficient array can be an object array with elements that
            # will raise a TypeError with >= 0 (e.g. strings or Python
            # complex). In this case, represent the coefficient as-is.
            try:
                if coef >= 0:
                    next_term = "+ " + pu.format_float(coef, parens=True)
                else:
                    next_term = "- " + pu.format_float(-coef, parens=True)
            except TypeError:
                next_term = f"+ {coef}"
            # Polynomial term
            next_term += term_method(power, scaled_symbol)
            # Length of the current line with next term added
            line_len = len(out.split('\n')[-1]) + len(next_term)
            # If not the last term in the polynomial, it will be two
            # characters longer due to the +/- with the next term
            if i < len(self.coef[1:]) - 1:
                line_len += 2
            # Handle linebreaking
            if line_len >= linewidth:
                next_term = next_term.replace(" ", "\n", 1)
            out += next_term
        return out

    @classmethod
    def _str_term_unicode(cls, i, arg_str):
        """
        String representation of single polynomial term using unicode
        characters for superscripts and subscripts.
        """
        if cls.basis_name is None:
            raise NotImplementedError(
                "Subclasses must define either a basis_name, or override "
                "_str_term_unicode(cls, i, arg_str)"
            )
        return (f"·{cls.basis_name}{i.translate(cls._subscript_mapping)}"
                f"({arg_str})")

    @classmethod
    def _str_term_ascii(cls, i, arg_str):
        """
        String representation of a single polynomial term using ** and _ to
        represent superscripts and subscripts, respectively.
        """
        if cls.basis_name is None:
            raise NotImplementedError(
                "Subclasses must define either a basis_name, or override "
                "_str_term_ascii(cls, i, arg_str)"
            )
        return f" {cls.basis_name}_{i}({arg_str})"

    @classmethod
    def _repr_latex_term(cls, i, arg_str, needs_parens):
        if cls.basis_name is None:
            raise NotImplementedError(
                "Subclasses must define either a basis name, or override "
                "_repr_latex_term(i, arg_str, needs_parens)")
        # since we always add parens, we don't care if the expression needs them
        return f"{{{cls.basis_name}}}_{{{i}}}({arg_str})"

    @staticmethod
    def _repr_latex_scalar(x, parens=False):
        # TODO: we're stuck with disabling math formatting until we handle
        # exponents in this function
        return r'\text{{{}}}'.format(pu.format_float(x, parens=parens))

    def _format_term(self, scalar_format: Callable, off: float, scale: float):
        """ Format a single term in the expansion """
        if off == 0 and scale == 1:
            term = self.symbol
            needs_parens = False
        elif scale == 1:
            term = f"{scalar_format(off)} + {self.symbol}"
            needs_parens = True
        elif off == 0:
            term = f"{scalar_format(scale)}{self.symbol}"
            needs_parens = True
        else:
            term = (
                f"{scalar_format(off)} + "
                f"{scalar_format(scale)}{self.symbol}"
            )
            needs_parens = True
        return term, needs_parens
    
    def _repr_latex_(self):
        # get the scaled argument string to the basis functions
        off, scale = self.mapparms()
        term, needs_parens = self._format_term(self._repr_latex_scalar,
                                               off, scale)

        mute = r"\color{{LightGray}}{{{}}}".format

        parts = []
        for i, c in enumerate(self.coef):
            # prevent duplication of + and - signs
            if i == 0:
                coef_str = f"{self._repr_latex_scalar(c)}"
            elif not isinstance(c, numbers.Real):
                coef_str = f" + ({self._repr_latex_scalar(c)})"
            elif c >= 0:
                coef_str = f" + {self._repr_latex_scalar(c, parens=True)}"
            else:
                coef_str = f" - {self._repr_latex_scalar(-c, parens=True)}"

            # produce the string for the term
            term_str = self._repr_latex_term(i, term, needs_parens)
            if term_str == '1':
                part = coef_str
            else:
                part = rf"{coef_str}\,{term_str}"

            if c == 0:
                part = mute(part)

            parts.append(part)

        if parts:
            body = ''.join(parts)
        else:
            # in case somehow there are no coefficients at all
            body = '0'

        return rf"${self.symbol} \mapsto {body}$"



    # Pickle and copy

    def __getstate__(self):
        ret = self.__dict__.copy()
        ret['coef'] = self.coef.copy()
        ret['domain'] = self.domain.copy()
        ret['window'] = self.window.copy()
        ret['symbol'] = self.symbol
        return ret

    def __setstate__(self, dict):
        self.__dict__ = dict

    # Call

    def __call__(self, arg):
        arg = pu.mapdomain(arg, self.domain, self.window)
        return self._val(arg, self.coef)

    def __iter__(self):
        return iter(self.coef)

    def __len__(self):
        return len(self.coef)

    # Numeric properties.

    def __neg__(self):
        return self.__class__(
            -self.coef, self.domain, self.window, self.symbol
        )

    def __pos__(self):
        return self

    def __add__(self, other):
        othercoef = self._get_coefficients(other)
        try:
            coef = self._add(self.coef, othercoef)
        except Exception:
            return NotImplemented
        return self.__class__(coef, self.domain, self.window, self.symbol)

    def __sub__(self, other):
        othercoef = self._get_coefficients(other)
        try:
            coef = self._sub(self.coef, othercoef)
        except Exception:
            return NotImplemented
        return self.__class__(coef, self.domain, self.window, self.symbol)

    def __mul__(self, other):
        othercoef = self._get_coefficients(other)
        try:
            coef = self._mul(self.coef, othercoef)
        except Exception:
            return NotImplemented
        return self.__class__(coef, self.domain, self.window, self.symbol)

    def __truediv__(self, other):
        # there is no true divide if the rhs is not a Number, although it
        # could return the first n elements of an infinite series.
        # It is hard to see where n would come from, though.
        if not isinstance(other, numbers.Number) or isinstance(other, bool):
            raise TypeError(
                f"unsupported types for true division: "
                f"'{type(self)}', '{type(other)}'"
            )
        return self.__floordiv__(other)

    def __floordiv__(self, other):
        res = self.__divmod__(other)
        if res is NotImplemented:
            return res
        return res[0]

    def __mod__(self, other):
        res = self.__divmod__(other)
        if res is NotImplemented:
            return res
        return res[1]

    def __divmod__(self, other):
        othercoef = self._get_coefficients(other)
        try:
            quo, rem = self._div(self.coef, othercoef)
        except ZeroDivisionError:
            raise
        except Exception:
            return NotImplemented
        quo = self.__class__(quo, self.domain, self.window, self.symbol)
        rem = self.__class__(rem, self.domain, self.window, self.symbol)
        return quo, rem

    def __pow__(self, other):
        coef = self._pow(self.coef, other, maxpower=self.maxpower)
        res = self.__class__(coef, self.domain, self.window, self.symbol)
        return res

    def __radd__(self, other):
        try:
            coef = self._add(other, self.coef)
        except Exception:
            return NotImplemented
        return self.__class__(coef, self.domain, self.window, self.symbol)

    def __rsub__(self, other):
        try:
            coef = self._sub(other, self.coef)
        except Exception:
            return NotImplemented
        return self.__class__(coef, self.domain, self.window, self.symbol)

    def __rmul__(self, other):
        try:
            coef = self._mul(other, self.coef)
        except Exception:
            return NotImplemented
        return self.__class__(coef, self.domain, self.window, self.symbol)

    def __rdiv__(self, other):
        # set to __floordiv__ /.
        return self.__rfloordiv__(other)

    def __rtruediv__(self, other):
        # An instance of ABCPolyBase is not considered a
        # Number.
        return NotImplemented

    def __rfloordiv__(self, other):
        res = self.__rdivmod__(other)
        if res is NotImplemented:
            return res
        return res[0]

    def __rmod__(self, other):
        res = self.__rdivmod__(other)
        if res is NotImplemented:
            return res
        return res[1]

    def __rdivmod__(self, other):
        try:
            quo, rem = self._div(other, self.coef)
        except ZeroDivisionError:
            raise
        except Exception:
            return NotImplemented
        quo = self.__class__(quo, self.domain, self.window, self.symbol)
        rem = self.__class__(rem, self.domain, self.window, self.symbol)
        return quo, rem

    def __eq__(self, other):
        res = (isinstance(other, self.__class__) and
               np.all(self.domain == other.domain) and
               np.all(self.window == other.window) and
               (self.coef.shape == other.coef.shape) and
               np.all(self.coef == other.coef) and
               (self.symbol == other.symbol))
        return res

    def __ne__(self, other):
        return not self.__eq__(other)

    #
    # Extra methods.
    #

    def copy(self):
        """Return a copy.

        Returns
        -------
        new_series : series
            Copy of self.

        """
        return self.__class__(self.coef, self.domain, self.window, self.symbol)

    def degree(self):
        """The degree of the series.

        .. versionadded:: 1.5.0

        Returns
        -------
        degree : int
            Degree of the series, one less than the number of coefficients.

        Examples
        --------

        Create a polynomial object for ``1 + 7*x + 4*x**2``:

        >>> poly = np.polynomial.Polynomial([1, 7, 4])
        >>> print(poly)
        1.0 + 7.0·x + 4.0·x²
        >>> poly.degree()
        2

        Note that this method does not check for non-zero coefficients.
        You must trim the polynomial to remove any trailing zeroes:

        >>> poly = np.polynomial.Polynomial([1, 7, 0])
        >>> print(poly)
        1.0 + 7.0·x + 0.0·x²
        >>> poly.degree()
        2
        >>> poly.trim().degree()
        1

        """
        return len(self) - 1

    def cutdeg(self, deg):
        """Truncate series to the given degree.

        Reduce the degree of the series to `deg` by discarding the
        high order terms. If `deg` is greater than the current degree a
        copy of the current series is returned. This can be useful in least
        squares where the coefficients of the high degree terms may be very
        small.

        .. versionadded:: 1.5.0

        Parameters
        ----------
        deg : non-negative int
            The series is reduced to degree `deg` by discarding the high
            order terms. The value of `deg` must be a non-negative integer.

        Returns
        -------
        new_series : series
            New instance of series with reduced degree.

        """
        return self.truncate(deg + 1)

    def trim(self, tol=0):
        """Remove trailing coefficients

        Remove trailing coefficients until a coefficient is reached whose
        absolute value greater than `tol` or the beginning of the series is
        reached. If all the coefficients would be removed the series is set
        to ``[0]``. A new series instance is returned with the new
        coefficients.  The current instance remains unchanged.

        Parameters
        ----------
        tol : non-negative number.
            All trailing coefficients less than `tol` will be removed.

        Returns
        -------
        new_series : series
            New instance of series with trimmed coefficients.

        """
        coef = pu.trimcoef(self.coef, tol)
        return self.__class__(coef, self.domain, self.window, self.symbol)

    def truncate(self, size):
        """Truncate series to length `size`.

        Reduce the series to length `size` by discarding the high
        degree terms. The value of `size` must be a positive integer. This
        can be useful in least squares where the coefficients of the
        high degree terms may be very small.

        Parameters
        ----------
        size : positive int
            The series is reduced to length `size` by discarding the high
            degree terms. The value of `size` must be a positive integer.

        Returns
        -------
        new_series : series
            New instance of series with truncated coefficients.

        """
        isize = int(size)
        if isize != size or isize < 1:
            raise ValueError("size must be a positive integer")
        if isize >= len(self.coef):
            coef = self.coef
        else:
            coef = self.coef[:isize]
        return self.__class__(coef, self.domain, self.window, self.symbol)

    def convert(self, domain=None, kind=None, window=None):
        """Convert series to a different kind and/or domain and/or window.

        Parameters
        ----------
        domain : array_like, optional
            The domain of the converted series. If the value is None,
            the default domain of `kind` is used.
        kind : class, optional
            The polynomial series type class to which the current instance
            should be converted. If kind is None, then the class of the
            current instance is used.
        window : array_like, optional
            The window of the converted series. If the value is None,
            the default window of `kind` is used.

        Returns
        -------
        new_series : series
            The returned class can be of different type than the current
            instance and/or have a different domain and/or different
            window.

        Notes
        -----
        Conversion between domains and class types can result in
        numerically ill defined series.

        """
        if kind is None:
            kind = self.__class__
        if domain is None:
            domain = kind.domain
        if window is None:
            window = kind.window
        return self(kind.identity(domain, window=window, symbol=self.symbol))

    def mapparms(self):
        """Return the mapping parameters.

        The returned values define a linear map ``off + scl*x`` that is
        applied to the input arguments before the series is evaluated. The
        map depends on the ``domain`` and ``window``; if the current
        ``domain`` is equal to the ``window`` the resulting map is the
        identity.  If the coefficients of the series instance are to be
        used by themselves outside this class, then the linear function
        must be substituted for the ``x`` in the standard representation of
        the base polynomials.

        Returns
        -------
        off, scl : float or complex
            The mapping function is defined by ``off + scl*x``.

        Notes
        -----
        If the current domain is the interval ``[l1, r1]`` and the window
        is ``[l2, r2]``, then the linear mapping function ``L`` is
        defined by the equations::

            L(l1) = l2
            L(r1) = r2

        """
        return pu.mapparms(self.domain, self.window)

    def integ(self, m=1, k=[], lbnd=None):
        """Integrate.

        Return a series instance that is the definite integral of the
        current series.

        Parameters
        ----------
        m : non-negative int
            The number of integrations to perform.
        k : array_like
            Integration constants. The first constant is applied to the
            first integration, the second to the second, and so on. The
            list of values must less than or equal to `m` in length and any
            missing values are set to zero.
        lbnd : Scalar
            The lower bound of the definite integral.

        Returns
        -------
        new_series : series
            A new series representing the integral. The domain is the same
            as the domain of the integrated series.

        """
        off, scl = self.mapparms()
        if lbnd is None:
            lbnd = 0
        else:
            lbnd = off + scl*lbnd
        coef = self._int(self.coef, m, k, lbnd, 1./scl)
        return self.__class__(coef, self.domain, self.window, self.symbol)

    def deriv(self, m=1):
        """Differentiate.

        Return a series instance of that is the derivative of the current
        series.

        Parameters
        ----------
        m : non-negative int
            Find the derivative of order `m`.

        Returns
        -------
        new_series : series
            A new series representing the derivative. The domain is the same
            as the domain of the differentiated series.

        """
        off, scl = self.mapparms()
        coef = self._der(self.coef, m, scl)
        return self.__class__(coef, self.domain, self.window, self.symbol)

    def roots(self):
        """Return the roots of the series polynomial.

        Compute the roots for the series. Note that the accuracy of the
        roots decreases the further outside the `domain` they lie.

        Returns
        -------
        roots : ndarray
            Array containing the roots of the series.

        """
        roots = self._roots(self.coef)
        return pu.mapdomain(roots, self.window, self.domain)

    def linspace(self, n=100, domain=None):
        """Return x, y values at equally spaced points in domain.

        Returns the x, y values at `n` linearly spaced points across the
        domain.  Here y is the value of the polynomial at the points x. By
        default the domain is the same as that of the series instance.
        This method is intended mostly as a plotting aid.

        .. versionadded:: 1.5.0

        Parameters
        ----------
        n : int, optional
            Number of point pairs to return. The default value is 100.
        domain : {None, array_like}, optional
            If not None, the specified domain is used instead of that of
            the calling instance. It should be of the form ``[beg,end]``.
            The default is None which case the class domain is used.

        Returns
        -------
        x, y : ndarray
            x is equal to linspace(self.domain[0], self.domain[1], n) and
            y is the series evaluated at element of x.

        """
        if domain is None:
            domain = self.domain
        x = np.linspace(domain[0], domain[1], n)
        y = self(x)
        return x, y

    @classmethod
    def fit(cls, x, y, deg, domain=None, rcond=None, full=False, w=None,
        window=None, symbol='x'):
        """Least squares fit to data.

        Return a series instance that is the least squares fit to the data
        `y` sampled at `x`. The domain of the returned instance can be
        specified and this will often result in a superior fit with less
        chance of ill conditioning.

        Parameters
        ----------
        x : array_like, shape (M,)
            x-coordinates of the M sample points ``(x[i], y[i])``.
        y : array_like, shape (M,)
            y-coordinates of the M sample points ``(x[i], y[i])``.
        deg : int or 1-D array_like
            Degree(s) of the fitting polynomials. If `deg` is a single integer
            all terms up to and including the `deg`'th term are included in the
            fit. For NumPy versions >= 1.11.0 a list of integers specifying the
            degrees of the terms to include may be used instead.
        domain : {None, [beg, end], []}, optional
            Domain to use for the returned series. If ``None``,
            then a minimal domain that covers the points `x` is chosen.  If
            ``[]`` the class domain is used. The default value was the
            class domain in NumPy 1.4 and ``None`` in later versions.
            The ``[]`` option was added in numpy 1.5.0.
        rcond : float, optional
            Relative condition number of the fit. Singular values smaller
            than this relative to the largest singular value will be
            ignored. The default value is ``len(x)*eps``, where eps is the
            relative precision of the float type, about 2e-16 in most
            cases.
        full : bool, optional
            Switch determining nature of return value. When it is False
            (the default) just the coefficients are returned, when True
            diagnostic information from the singular value decomposition is
            also returned.
        w : array_like, shape (M,), optional
            Weights. If not None, the weight ``w[i]`` applies to the unsquared
            residual ``y[i] - y_hat[i]`` at ``x[i]``. Ideally the weights are
            chosen so that the errors of the products ``w[i]*y[i]`` all have
            the same variance.  When using inverse-variance weighting, use
            ``w[i] = 1/sigma(y[i])``.  The default value is None.

            .. versionadded:: 1.5.0
        window : {[beg, end]}, optional
            Window to use for the returned series. The default
            value is the default class domain

            .. versionadded:: 1.6.0
        symbol : str, optional
            Symbol representing the independent variable. Default is 'x'.

        Returns
        -------
        new_series : series
            A series that represents the least squares fit to the data and
            has the domain and window specified in the call. If the
            coefficients for the unscaled and unshifted basis polynomials are
            of interest, do ``new_series.convert().coef``.

        [resid, rank, sv, rcond] : list
            These values are only returned if ``full == True``

            - resid -- sum of squared residuals of the least squares fit
            - rank -- the numerical rank of the scaled Vandermonde matrix
            - sv -- singular values of the scaled Vandermonde matrix
            - rcond -- value of `rcond`.

            For more details, see `linalg.lstsq`.

        """
        if domain is None:
            domain = pu.getdomain(x)
            if domain[0] == domain[1]:
                domain[0] -= 1
                domain[1] += 1   
        elif type(domain) is list and len(domain) == 0:
            domain = cls.domain

        if window is None:
            window = cls.window

        xnew = pu.mapdomain(x, domain, window)
        res = cls._fit(xnew, y, deg, w=w, rcond=rcond, full=full)
        if full:
            [coef, status] = res
            return (
                cls(coef, domain=domain, window=window, symbol=symbol), status
            )
        else:
            coef = res
            return cls(coef, domain=domain, window=window, symbol=symbol)

    @classmethod
    def fromroots(cls, roots, domain=[], window=None, symbol='x'):
        """Return series instance that has the specified roots.

        Returns a series representing the product
        ``(x - r[0])*(x - r[1])*...*(x - r[n-1])``, where ``r`` is a
        list of roots.

        Parameters
        ----------
        roots : array_like
            List of roots.
        domain : {[], None, array_like}, optional
            Domain for the resulting series. If None the domain is the
            interval from the smallest root to the largest. If [] the
            domain is the class domain. The default is [].
        window : {None, array_like}, optional
            Window for the returned series. If None the class window is
            used. The default is None.
        symbol : str, optional
            Symbol representing the independent variable. Default is 'x'.

        Returns
        -------
        new_series : series
            Series with the specified roots.

        """
        [roots] = pu.as_series([roots], trim=False)
        if domain is None:
            domain = pu.getdomain(roots)
        elif type(domain) is list and len(domain) == 0:
            domain = cls.domain

        if window is None:
            window = cls.window

        deg = len(roots)
        off, scl = pu.mapparms(domain, window)
        rnew = off + scl*roots
        coef = cls._fromroots(rnew) / scl**deg
        return cls(coef, domain=domain, window=window, symbol=symbol)

    @classmethod
    def identity(cls, domain=None, window=None, symbol='x'):
        """Identity function.

        If ``p`` is the returned series, then ``p(x) == x`` for all
        values of x.

        Parameters
        ----------
        domain : {None, array_like}, optional
            If given, the array must be of the form ``[beg, end]``, where
            ``beg`` and ``end`` are the endpoints of the domain. If None is
            given then the class domain is used. The default is None.
        window : {None, array_like}, optional
            If given, the resulting array must be if the form
            ``[beg, end]``, where ``beg`` and ``end`` are the endpoints of
            the window. If None is given then the class window is used. The
            default is None.
        symbol : str, optional
            Symbol representing the independent variable. Default is 'x'.

        Returns
        -------
        new_series : series
             Series of representing the identity.

        """
        if domain is None:
            domain = cls.domain
        if window is None:
            window = cls.window
        off, scl = pu.mapparms(window, domain)
        coef = cls._line(off, scl)
        return cls(coef, domain, window, symbol)

    @classmethod
    def basis(cls, deg, domain=None, window=None, symbol='x'):
        """Series basis polynomial of degree `deg`.

        Returns the series representing the basis polynomial of degree `deg`.

        .. versionadded:: 1.7.0

        Parameters
        ----------
        deg : int
            Degree of the basis polynomial for the series. Must be >= 0.
        domain : {None, array_like}, optional
            If given, the array must be of the form ``[beg, end]``, where
            ``beg`` and ``end`` are the endpoints of the domain. If None is
            given then the class domain is used. The default is None.
        window : {None, array_like}, optional
            If given, the resulting array must be if the form
            ``[beg, end]``, where ``beg`` and ``end`` are the endpoints of
            the window. If None is given then the class window is used. The
            default is None.
        symbol : str, optional
            Symbol representing the independent variable. Default is 'x'.

        Returns
        -------
        new_series : series
            A series with the coefficient of the `deg` term set to one and
            all others zero.

        """
        if domain is None:
            domain = cls.domain
        if window is None:
            window = cls.window
        ideg = int(deg)

        if ideg != deg or ideg < 0:
            raise ValueError("deg must be non-negative integer")
        return cls([0]*ideg + [1], domain, window, symbol)

    @classmethod
    def cast(cls, series, domain=None, window=None):
        """Convert series to series of this class.

        The `series` is expected to be an instance of some polynomial
        series of one of the types supported by by the numpy.polynomial
        module, but could be some other class that supports the convert
        method.

        .. versionadded:: 1.7.0

        Parameters
        ----------
        series : series
            The series instance to be converted.
        domain : {None, array_like}, optional
            If given, the array must be of the form ``[beg, end]``, where
            ``beg`` and ``end`` are the endpoints of the domain. If None is
            given then the class domain is used. The default is None.
        window : {None, array_like}, optional
            If given, the resulting array must be if the form
            ``[beg, end]``, where ``beg`` and ``end`` are the endpoints of
            the window. If None is given then the class window is used. The
            default is None.

        Returns
        -------
        new_series : series
            A series of the same kind as the calling class and equal to
            `series` when evaluated.

        See Also
        --------
        convert : similar instance method

        """
        if domain is None:
            domain = cls.domain
        if window is None:
            window = cls.window
        return series.convert(domain, cls, window)