File size: 22,486 Bytes
6370773 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 |
"""
Utility classes and functions for the polynomial modules.
This module provides: error and warning objects; a polynomial base class;
and some routines used in both the `polynomial` and `chebyshev` modules.
Functions
---------
.. autosummary::
:toctree: generated/
as_series convert list of array_likes into 1-D arrays of common type.
trimseq remove trailing zeros.
trimcoef remove small trailing coefficients.
getdomain return the domain appropriate for a given set of abscissae.
mapdomain maps points between domains.
mapparms parameters of the linear map between domains.
"""
import operator
import functools
import warnings
import numpy as np
from numpy._core.multiarray import dragon4_positional, dragon4_scientific
from numpy.exceptions import RankWarning
__all__ = [
'as_series', 'trimseq', 'trimcoef', 'getdomain', 'mapdomain', 'mapparms',
'format_float']
#
# Helper functions to convert inputs to 1-D arrays
#
def trimseq(seq):
"""Remove small Poly series coefficients.
Parameters
----------
seq : sequence
Sequence of Poly series coefficients.
Returns
-------
series : sequence
Subsequence with trailing zeros removed. If the resulting sequence
would be empty, return the first element. The returned sequence may
or may not be a view.
Notes
-----
Do not lose the type info if the sequence contains unknown objects.
"""
if len(seq) == 0 or seq[-1] != 0:
return seq
else:
for i in range(len(seq) - 1, -1, -1):
if seq[i] != 0:
break
return seq[:i+1]
def as_series(alist, trim=True):
"""
Return argument as a list of 1-d arrays.
The returned list contains array(s) of dtype double, complex double, or
object. A 1-d argument of shape ``(N,)`` is parsed into ``N`` arrays of
size one; a 2-d argument of shape ``(M,N)`` is parsed into ``M`` arrays
of size ``N`` (i.e., is "parsed by row"); and a higher dimensional array
raises a Value Error if it is not first reshaped into either a 1-d or 2-d
array.
Parameters
----------
alist : array_like
A 1- or 2-d array_like
trim : boolean, optional
When True, trailing zeros are removed from the inputs.
When False, the inputs are passed through intact.
Returns
-------
[a1, a2,...] : list of 1-D arrays
A copy of the input data as a list of 1-d arrays.
Raises
------
ValueError
Raised when `as_series` cannot convert its input to 1-d arrays, or at
least one of the resulting arrays is empty.
Examples
--------
>>> import numpy as np
>>> from numpy.polynomial import polyutils as pu
>>> a = np.arange(4)
>>> pu.as_series(a)
[array([0.]), array([1.]), array([2.]), array([3.])]
>>> b = np.arange(6).reshape((2,3))
>>> pu.as_series(b)
[array([0., 1., 2.]), array([3., 4., 5.])]
>>> pu.as_series((1, np.arange(3), np.arange(2, dtype=np.float16)))
[array([1.]), array([0., 1., 2.]), array([0., 1.])]
>>> pu.as_series([2, [1.1, 0.]])
[array([2.]), array([1.1])]
>>> pu.as_series([2, [1.1, 0.]], trim=False)
[array([2.]), array([1.1, 0. ])]
"""
arrays = [np.array(a, ndmin=1, copy=None) for a in alist]
for a in arrays:
if a.size == 0:
raise ValueError("Coefficient array is empty")
if any(a.ndim != 1 for a in arrays):
raise ValueError("Coefficient array is not 1-d")
if trim:
arrays = [trimseq(a) for a in arrays]
if any(a.dtype == np.dtype(object) for a in arrays):
ret = []
for a in arrays:
if a.dtype != np.dtype(object):
tmp = np.empty(len(a), dtype=np.dtype(object))
tmp[:] = a[:]
ret.append(tmp)
else:
ret.append(a.copy())
else:
try:
dtype = np.common_type(*arrays)
except Exception as e:
raise ValueError("Coefficient arrays have no common type") from e
ret = [np.array(a, copy=True, dtype=dtype) for a in arrays]
return ret
def trimcoef(c, tol=0):
"""
Remove "small" "trailing" coefficients from a polynomial.
"Small" means "small in absolute value" and is controlled by the
parameter `tol`; "trailing" means highest order coefficient(s), e.g., in
``[0, 1, 1, 0, 0]`` (which represents ``0 + x + x**2 + 0*x**3 + 0*x**4``)
both the 3-rd and 4-th order coefficients would be "trimmed."
Parameters
----------
c : array_like
1-d array of coefficients, ordered from lowest order to highest.
tol : number, optional
Trailing (i.e., highest order) elements with absolute value less
than or equal to `tol` (default value is zero) are removed.
Returns
-------
trimmed : ndarray
1-d array with trailing zeros removed. If the resulting series
would be empty, a series containing a single zero is returned.
Raises
------
ValueError
If `tol` < 0
Examples
--------
>>> from numpy.polynomial import polyutils as pu
>>> pu.trimcoef((0,0,3,0,5,0,0))
array([0., 0., 3., 0., 5.])
>>> pu.trimcoef((0,0,1e-3,0,1e-5,0,0),1e-3) # item == tol is trimmed
array([0.])
>>> i = complex(0,1) # works for complex
>>> pu.trimcoef((3e-4,1e-3*(1-i),5e-4,2e-5*(1+i)), 1e-3)
array([0.0003+0.j , 0.001 -0.001j])
"""
if tol < 0:
raise ValueError("tol must be non-negative")
[c] = as_series([c])
[ind] = np.nonzero(np.abs(c) > tol)
if len(ind) == 0:
return c[:1]*0
else:
return c[:ind[-1] + 1].copy()
def getdomain(x):
"""
Return a domain suitable for given abscissae.
Find a domain suitable for a polynomial or Chebyshev series
defined at the values supplied.
Parameters
----------
x : array_like
1-d array of abscissae whose domain will be determined.
Returns
-------
domain : ndarray
1-d array containing two values. If the inputs are complex, then
the two returned points are the lower left and upper right corners
of the smallest rectangle (aligned with the axes) in the complex
plane containing the points `x`. If the inputs are real, then the
two points are the ends of the smallest interval containing the
points `x`.
See Also
--------
mapparms, mapdomain
Examples
--------
>>> import numpy as np
>>> from numpy.polynomial import polyutils as pu
>>> points = np.arange(4)**2 - 5; points
array([-5, -4, -1, 4])
>>> pu.getdomain(points)
array([-5., 4.])
>>> c = np.exp(complex(0,1)*np.pi*np.arange(12)/6) # unit circle
>>> pu.getdomain(c)
array([-1.-1.j, 1.+1.j])
"""
[x] = as_series([x], trim=False)
if x.dtype.char in np.typecodes['Complex']:
rmin, rmax = x.real.min(), x.real.max()
imin, imax = x.imag.min(), x.imag.max()
return np.array((complex(rmin, imin), complex(rmax, imax)))
else:
return np.array((x.min(), x.max()))
def mapparms(old, new):
"""
Linear map parameters between domains.
Return the parameters of the linear map ``offset + scale*x`` that maps
`old` to `new` such that ``old[i] -> new[i]``, ``i = 0, 1``.
Parameters
----------
old, new : array_like
Domains. Each domain must (successfully) convert to a 1-d array
containing precisely two values.
Returns
-------
offset, scale : scalars
The map ``L(x) = offset + scale*x`` maps the first domain to the
second.
See Also
--------
getdomain, mapdomain
Notes
-----
Also works for complex numbers, and thus can be used to calculate the
parameters required to map any line in the complex plane to any other
line therein.
Examples
--------
>>> from numpy.polynomial import polyutils as pu
>>> pu.mapparms((-1,1),(-1,1))
(0.0, 1.0)
>>> pu.mapparms((1,-1),(-1,1))
(-0.0, -1.0)
>>> i = complex(0,1)
>>> pu.mapparms((-i,-1),(1,i))
((1+1j), (1-0j))
"""
oldlen = old[1] - old[0]
newlen = new[1] - new[0]
off = (old[1]*new[0] - old[0]*new[1])/oldlen
scl = newlen/oldlen
return off, scl
def mapdomain(x, old, new):
"""
Apply linear map to input points.
The linear map ``offset + scale*x`` that maps the domain `old` to
the domain `new` is applied to the points `x`.
Parameters
----------
x : array_like
Points to be mapped. If `x` is a subtype of ndarray the subtype
will be preserved.
old, new : array_like
The two domains that determine the map. Each must (successfully)
convert to 1-d arrays containing precisely two values.
Returns
-------
x_out : ndarray
Array of points of the same shape as `x`, after application of the
linear map between the two domains.
See Also
--------
getdomain, mapparms
Notes
-----
Effectively, this implements:
.. math::
x\\_out = new[0] + m(x - old[0])
where
.. math::
m = \\frac{new[1]-new[0]}{old[1]-old[0]}
Examples
--------
>>> import numpy as np
>>> from numpy.polynomial import polyutils as pu
>>> old_domain = (-1,1)
>>> new_domain = (0,2*np.pi)
>>> x = np.linspace(-1,1,6); x
array([-1. , -0.6, -0.2, 0.2, 0.6, 1. ])
>>> x_out = pu.mapdomain(x, old_domain, new_domain); x_out
array([ 0. , 1.25663706, 2.51327412, 3.76991118, 5.02654825, # may vary
6.28318531])
>>> x - pu.mapdomain(x_out, new_domain, old_domain)
array([0., 0., 0., 0., 0., 0.])
Also works for complex numbers (and thus can be used to map any line in
the complex plane to any other line therein).
>>> i = complex(0,1)
>>> old = (-1 - i, 1 + i)
>>> new = (-1 + i, 1 - i)
>>> z = np.linspace(old[0], old[1], 6); z
array([-1. -1.j , -0.6-0.6j, -0.2-0.2j, 0.2+0.2j, 0.6+0.6j, 1. +1.j ])
>>> new_z = pu.mapdomain(z, old, new); new_z
array([-1.0+1.j , -0.6+0.6j, -0.2+0.2j, 0.2-0.2j, 0.6-0.6j, 1.0-1.j ]) # may vary
"""
if type(x) not in (int, float, complex) and not isinstance(x, np.generic):
x = np.asanyarray(x)
off, scl = mapparms(old, new)
return off + scl*x
def _nth_slice(i, ndim):
sl = [np.newaxis] * ndim
sl[i] = slice(None)
return tuple(sl)
def _vander_nd(vander_fs, points, degrees):
r"""
A generalization of the Vandermonde matrix for N dimensions
The result is built by combining the results of 1d Vandermonde matrices,
.. math::
W[i_0, \ldots, i_M, j_0, \ldots, j_N] = \prod_{k=0}^N{V_k(x_k)[i_0, \ldots, i_M, j_k]}
where
.. math::
N &= \texttt{len(points)} = \texttt{len(degrees)} = \texttt{len(vander\_fs)} \\
M &= \texttt{points[k].ndim} \\
V_k &= \texttt{vander\_fs[k]} \\
x_k &= \texttt{points[k]} \\
0 \le j_k &\le \texttt{degrees[k]}
Expanding the one-dimensional :math:`V_k` functions gives:
.. math::
W[i_0, \ldots, i_M, j_0, \ldots, j_N] = \prod_{k=0}^N{B_{k, j_k}(x_k[i_0, \ldots, i_M])}
where :math:`B_{k,m}` is the m'th basis of the polynomial construction used along
dimension :math:`k`. For a regular polynomial, :math:`B_{k, m}(x) = P_m(x) = x^m`.
Parameters
----------
vander_fs : Sequence[function(array_like, int) -> ndarray]
The 1d vander function to use for each axis, such as ``polyvander``
points : Sequence[array_like]
Arrays of point coordinates, all of the same shape. The dtypes
will be converted to either float64 or complex128 depending on
whether any of the elements are complex. Scalars are converted to
1-D arrays.
This must be the same length as `vander_fs`.
degrees : Sequence[int]
The maximum degree (inclusive) to use for each axis.
This must be the same length as `vander_fs`.
Returns
-------
vander_nd : ndarray
An array of shape ``points[0].shape + tuple(d + 1 for d in degrees)``.
"""
n_dims = len(vander_fs)
if n_dims != len(points):
raise ValueError(
f"Expected {n_dims} dimensions of sample points, got {len(points)}")
if n_dims != len(degrees):
raise ValueError(
f"Expected {n_dims} dimensions of degrees, got {len(degrees)}")
if n_dims == 0:
raise ValueError("Unable to guess a dtype or shape when no points are given")
# convert to the same shape and type
points = tuple(np.asarray(tuple(points)) + 0.0)
# produce the vandermonde matrix for each dimension, placing the last
# axis of each in an independent trailing axis of the output
vander_arrays = (
vander_fs[i](points[i], degrees[i])[(...,) + _nth_slice(i, n_dims)]
for i in range(n_dims)
)
# we checked this wasn't empty already, so no `initial` needed
return functools.reduce(operator.mul, vander_arrays)
def _vander_nd_flat(vander_fs, points, degrees):
"""
Like `_vander_nd`, but flattens the last ``len(degrees)`` axes into a single axis
Used to implement the public ``<type>vander<n>d`` functions.
"""
v = _vander_nd(vander_fs, points, degrees)
return v.reshape(v.shape[:-len(degrees)] + (-1,))
def _fromroots(line_f, mul_f, roots):
"""
Helper function used to implement the ``<type>fromroots`` functions.
Parameters
----------
line_f : function(float, float) -> ndarray
The ``<type>line`` function, such as ``polyline``
mul_f : function(array_like, array_like) -> ndarray
The ``<type>mul`` function, such as ``polymul``
roots
See the ``<type>fromroots`` functions for more detail
"""
if len(roots) == 0:
return np.ones(1)
else:
[roots] = as_series([roots], trim=False)
roots.sort()
p = [line_f(-r, 1) for r in roots]
n = len(p)
while n > 1:
m, r = divmod(n, 2)
tmp = [mul_f(p[i], p[i+m]) for i in range(m)]
if r:
tmp[0] = mul_f(tmp[0], p[-1])
p = tmp
n = m
return p[0]
def _valnd(val_f, c, *args):
"""
Helper function used to implement the ``<type>val<n>d`` functions.
Parameters
----------
val_f : function(array_like, array_like, tensor: bool) -> array_like
The ``<type>val`` function, such as ``polyval``
c, args
See the ``<type>val<n>d`` functions for more detail
"""
args = [np.asanyarray(a) for a in args]
shape0 = args[0].shape
if not all(a.shape == shape0 for a in args[1:]):
if len(args) == 3:
raise ValueError('x, y, z are incompatible')
elif len(args) == 2:
raise ValueError('x, y are incompatible')
else:
raise ValueError('ordinates are incompatible')
it = iter(args)
x0 = next(it)
# use tensor on only the first
c = val_f(x0, c)
for xi in it:
c = val_f(xi, c, tensor=False)
return c
def _gridnd(val_f, c, *args):
"""
Helper function used to implement the ``<type>grid<n>d`` functions.
Parameters
----------
val_f : function(array_like, array_like, tensor: bool) -> array_like
The ``<type>val`` function, such as ``polyval``
c, args
See the ``<type>grid<n>d`` functions for more detail
"""
for xi in args:
c = val_f(xi, c)
return c
def _div(mul_f, c1, c2):
"""
Helper function used to implement the ``<type>div`` functions.
Implementation uses repeated subtraction of c2 multiplied by the nth basis.
For some polynomial types, a more efficient approach may be possible.
Parameters
----------
mul_f : function(array_like, array_like) -> array_like
The ``<type>mul`` function, such as ``polymul``
c1, c2
See the ``<type>div`` functions for more detail
"""
# c1, c2 are trimmed copies
[c1, c2] = as_series([c1, c2])
if c2[-1] == 0:
raise ZeroDivisionError()
lc1 = len(c1)
lc2 = len(c2)
if lc1 < lc2:
return c1[:1]*0, c1
elif lc2 == 1:
return c1/c2[-1], c1[:1]*0
else:
quo = np.empty(lc1 - lc2 + 1, dtype=c1.dtype)
rem = c1
for i in range(lc1 - lc2, - 1, -1):
p = mul_f([0]*i + [1], c2)
q = rem[-1]/p[-1]
rem = rem[:-1] - q*p[:-1]
quo[i] = q
return quo, trimseq(rem)
def _add(c1, c2):
""" Helper function used to implement the ``<type>add`` functions. """
# c1, c2 are trimmed copies
[c1, c2] = as_series([c1, c2])
if len(c1) > len(c2):
c1[:c2.size] += c2
ret = c1
else:
c2[:c1.size] += c1
ret = c2
return trimseq(ret)
def _sub(c1, c2):
""" Helper function used to implement the ``<type>sub`` functions. """
# c1, c2 are trimmed copies
[c1, c2] = as_series([c1, c2])
if len(c1) > len(c2):
c1[:c2.size] -= c2
ret = c1
else:
c2 = -c2
c2[:c1.size] += c1
ret = c2
return trimseq(ret)
def _fit(vander_f, x, y, deg, rcond=None, full=False, w=None):
"""
Helper function used to implement the ``<type>fit`` functions.
Parameters
----------
vander_f : function(array_like, int) -> ndarray
The 1d vander function, such as ``polyvander``
c1, c2
See the ``<type>fit`` functions for more detail
"""
x = np.asarray(x) + 0.0
y = np.asarray(y) + 0.0
deg = np.asarray(deg)
# check arguments.
if deg.ndim > 1 or deg.dtype.kind not in 'iu' or deg.size == 0:
raise TypeError("deg must be an int or non-empty 1-D array of int")
if deg.min() < 0:
raise ValueError("expected deg >= 0")
if x.ndim != 1:
raise TypeError("expected 1D vector for x")
if x.size == 0:
raise TypeError("expected non-empty vector for x")
if y.ndim < 1 or y.ndim > 2:
raise TypeError("expected 1D or 2D array for y")
if len(x) != len(y):
raise TypeError("expected x and y to have same length")
if deg.ndim == 0:
lmax = deg
order = lmax + 1
van = vander_f(x, lmax)
else:
deg = np.sort(deg)
lmax = deg[-1]
order = len(deg)
van = vander_f(x, lmax)[:, deg]
# set up the least squares matrices in transposed form
lhs = van.T
rhs = y.T
if w is not None:
w = np.asarray(w) + 0.0
if w.ndim != 1:
raise TypeError("expected 1D vector for w")
if len(x) != len(w):
raise TypeError("expected x and w to have same length")
# apply weights. Don't use inplace operations as they
# can cause problems with NA.
lhs = lhs * w
rhs = rhs * w
# set rcond
if rcond is None:
rcond = len(x)*np.finfo(x.dtype).eps
# Determine the norms of the design matrix columns.
if issubclass(lhs.dtype.type, np.complexfloating):
scl = np.sqrt((np.square(lhs.real) + np.square(lhs.imag)).sum(1))
else:
scl = np.sqrt(np.square(lhs).sum(1))
scl[scl == 0] = 1
# Solve the least squares problem.
c, resids, rank, s = np.linalg.lstsq(lhs.T/scl, rhs.T, rcond)
c = (c.T/scl).T
# Expand c to include non-fitted coefficients which are set to zero
if deg.ndim > 0:
if c.ndim == 2:
cc = np.zeros((lmax+1, c.shape[1]), dtype=c.dtype)
else:
cc = np.zeros(lmax+1, dtype=c.dtype)
cc[deg] = c
c = cc
# warn on rank reduction
if rank != order and not full:
msg = "The fit may be poorly conditioned"
warnings.warn(msg, RankWarning, stacklevel=2)
if full:
return c, [resids, rank, s, rcond]
else:
return c
def _pow(mul_f, c, pow, maxpower):
"""
Helper function used to implement the ``<type>pow`` functions.
Parameters
----------
mul_f : function(array_like, array_like) -> ndarray
The ``<type>mul`` function, such as ``polymul``
c : array_like
1-D array of array of series coefficients
pow, maxpower
See the ``<type>pow`` functions for more detail
"""
# c is a trimmed copy
[c] = as_series([c])
power = int(pow)
if power != pow or power < 0:
raise ValueError("Power must be a non-negative integer.")
elif maxpower is not None and power > maxpower:
raise ValueError("Power is too large")
elif power == 0:
return np.array([1], dtype=c.dtype)
elif power == 1:
return c
else:
# This can be made more efficient by using powers of two
# in the usual way.
prd = c
for i in range(2, power + 1):
prd = mul_f(prd, c)
return prd
def _as_int(x, desc):
"""
Like `operator.index`, but emits a custom exception when passed an
incorrect type
Parameters
----------
x : int-like
Value to interpret as an integer
desc : str
description to include in any error message
Raises
------
TypeError : if x is a float or non-numeric
"""
try:
return operator.index(x)
except TypeError as e:
raise TypeError(f"{desc} must be an integer, received {x}") from e
def format_float(x, parens=False):
if not np.issubdtype(type(x), np.floating):
return str(x)
opts = np.get_printoptions()
if np.isnan(x):
return opts['nanstr']
elif np.isinf(x):
return opts['infstr']
exp_format = False
if x != 0:
a = np.abs(x)
if a >= 1.e8 or a < 10**min(0, -(opts['precision']-1)//2):
exp_format = True
trim, unique = '0', True
if opts['floatmode'] == 'fixed':
trim, unique = 'k', False
if exp_format:
s = dragon4_scientific(x, precision=opts['precision'],
unique=unique, trim=trim,
sign=opts['sign'] == '+')
if parens:
s = '(' + s + ')'
else:
s = dragon4_positional(x, precision=opts['precision'],
fractional=True,
unique=unique, trim=trim,
sign=opts['sign'] == '+')
return s
|