File size: 8,658 Bytes
6370773
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
from __future__ import annotations

import os
import warnings

__docformat__ = "restructuredtext"

# Let users know if they're missing any of our hard dependencies
_hard_dependencies = ("numpy", "pytz", "dateutil")
_missing_dependencies = []

for _dependency in _hard_dependencies:
    try:
        __import__(_dependency)
    except ImportError as _e:  # pragma: no cover
        _missing_dependencies.append(f"{_dependency}: {_e}")

if _missing_dependencies:  # pragma: no cover
    raise ImportError(
        "Unable to import required dependencies:\n" + "\n".join(_missing_dependencies)
    )
del _hard_dependencies, _dependency, _missing_dependencies

try:
    # numpy compat
    from pandas.compat import (
        is_numpy_dev as _is_numpy_dev,  # pyright: ignore[reportUnusedImport] # noqa: F401
    )
except ImportError as _err:  # pragma: no cover
    _module = _err.name
    raise ImportError(
        f"C extension: {_module} not built. If you want to import "
        "pandas from the source directory, you may need to run "
        "'python setup.py build_ext' to build the C extensions first."
    ) from _err

from pandas._config import (
    get_option,
    set_option,
    reset_option,
    describe_option,
    option_context,
    options,
)

# let init-time option registration happen
import pandas.core.config_init  # pyright: ignore[reportUnusedImport] # noqa: F401

from pandas.core.api import (
    # dtype
    ArrowDtype,
    Int8Dtype,
    Int16Dtype,
    Int32Dtype,
    Int64Dtype,
    UInt8Dtype,
    UInt16Dtype,
    UInt32Dtype,
    UInt64Dtype,
    Float32Dtype,
    Float64Dtype,
    CategoricalDtype,
    PeriodDtype,
    IntervalDtype,
    DatetimeTZDtype,
    StringDtype,
    BooleanDtype,
    # missing
    NA,
    isna,
    isnull,
    notna,
    notnull,
    # indexes
    Index,
    CategoricalIndex,
    RangeIndex,
    MultiIndex,
    IntervalIndex,
    TimedeltaIndex,
    DatetimeIndex,
    PeriodIndex,
    IndexSlice,
    # tseries
    NaT,
    Period,
    period_range,
    Timedelta,
    timedelta_range,
    Timestamp,
    date_range,
    bdate_range,
    Interval,
    interval_range,
    DateOffset,
    # conversion
    to_numeric,
    to_datetime,
    to_timedelta,
    # misc
    Flags,
    Grouper,
    factorize,
    unique,
    value_counts,
    NamedAgg,
    array,
    Categorical,
    set_eng_float_format,
    Series,
    DataFrame,
)

from pandas.core.dtypes.dtypes import SparseDtype

from pandas.tseries.api import infer_freq
from pandas.tseries import offsets

from pandas.core.computation.api import eval

from pandas.core.reshape.api import (
    concat,
    lreshape,
    melt,
    wide_to_long,
    merge,
    merge_asof,
    merge_ordered,
    crosstab,
    pivot,
    pivot_table,
    get_dummies,
    from_dummies,
    cut,
    qcut,
)

from pandas import api, arrays, errors, io, plotting, tseries
from pandas import testing
from pandas.util._print_versions import show_versions

from pandas.io.api import (
    # excel
    ExcelFile,
    ExcelWriter,
    read_excel,
    # parsers
    read_csv,
    read_fwf,
    read_table,
    # pickle
    read_pickle,
    to_pickle,
    # pytables
    HDFStore,
    read_hdf,
    # sql
    read_sql,
    read_sql_query,
    read_sql_table,
    # misc
    read_clipboard,
    read_parquet,
    read_orc,
    read_feather,
    read_gbq,
    read_html,
    read_xml,
    read_json,
    read_stata,
    read_sas,
    read_spss,
)

from pandas.io.json._normalize import json_normalize

from pandas.util._tester import test

# use the closest tagged version if possible
_built_with_meson = False
try:
    from pandas._version_meson import (  # pyright: ignore [reportMissingImports]
        __version__,
        __git_version__,
    )

    _built_with_meson = True
except ImportError:
    from pandas._version import get_versions

    v = get_versions()
    __version__ = v.get("closest-tag", v["version"])
    __git_version__ = v.get("full-revisionid")
    del get_versions, v

# GH#55043 - deprecation of the data_manager option
if "PANDAS_DATA_MANAGER" in os.environ:
    warnings.warn(
        "The env variable PANDAS_DATA_MANAGER is set. The data_manager option is "
        "deprecated and will be removed in a future version. Only the BlockManager "
        "will be available. Unset this environment variable to silence this warning.",
        FutureWarning,
        stacklevel=2,
    )

del warnings, os

# module level doc-string
__doc__ = """
pandas - a powerful data analysis and manipulation library for Python
=====================================================================

**pandas** is a Python package providing fast, flexible, and expressive data
structures designed to make working with "relational" or "labeled" data both
easy and intuitive. It aims to be the fundamental high-level building block for
doing practical, **real world** data analysis in Python. Additionally, it has
the broader goal of becoming **the most powerful and flexible open source data
analysis / manipulation tool available in any language**. It is already well on
its way toward this goal.

Main Features
-------------
Here are just a few of the things that pandas does well:

  - Easy handling of missing data in floating point as well as non-floating
    point data.
  - Size mutability: columns can be inserted and deleted from DataFrame and
    higher dimensional objects
  - Automatic and explicit data alignment: objects can be explicitly aligned
    to a set of labels, or the user can simply ignore the labels and let
    `Series`, `DataFrame`, etc. automatically align the data for you in
    computations.
  - Powerful, flexible group by functionality to perform split-apply-combine
    operations on data sets, for both aggregating and transforming data.
  - Make it easy to convert ragged, differently-indexed data in other Python
    and NumPy data structures into DataFrame objects.
  - Intelligent label-based slicing, fancy indexing, and subsetting of large
    data sets.
  - Intuitive merging and joining data sets.
  - Flexible reshaping and pivoting of data sets.
  - Hierarchical labeling of axes (possible to have multiple labels per tick).
  - Robust IO tools for loading data from flat files (CSV and delimited),
    Excel files, databases, and saving/loading data from the ultrafast HDF5
    format.
  - Time series-specific functionality: date range generation and frequency
    conversion, moving window statistics, date shifting and lagging.
"""

# Use __all__ to let type checkers know what is part of the public API.
# Pandas is not (yet) a py.typed library: the public API is determined
# based on the documentation.
__all__ = [
    "ArrowDtype",
    "BooleanDtype",
    "Categorical",
    "CategoricalDtype",
    "CategoricalIndex",
    "DataFrame",
    "DateOffset",
    "DatetimeIndex",
    "DatetimeTZDtype",
    "ExcelFile",
    "ExcelWriter",
    "Flags",
    "Float32Dtype",
    "Float64Dtype",
    "Grouper",
    "HDFStore",
    "Index",
    "IndexSlice",
    "Int16Dtype",
    "Int32Dtype",
    "Int64Dtype",
    "Int8Dtype",
    "Interval",
    "IntervalDtype",
    "IntervalIndex",
    "MultiIndex",
    "NA",
    "NaT",
    "NamedAgg",
    "Period",
    "PeriodDtype",
    "PeriodIndex",
    "RangeIndex",
    "Series",
    "SparseDtype",
    "StringDtype",
    "Timedelta",
    "TimedeltaIndex",
    "Timestamp",
    "UInt16Dtype",
    "UInt32Dtype",
    "UInt64Dtype",
    "UInt8Dtype",
    "api",
    "array",
    "arrays",
    "bdate_range",
    "concat",
    "crosstab",
    "cut",
    "date_range",
    "describe_option",
    "errors",
    "eval",
    "factorize",
    "get_dummies",
    "from_dummies",
    "get_option",
    "infer_freq",
    "interval_range",
    "io",
    "isna",
    "isnull",
    "json_normalize",
    "lreshape",
    "melt",
    "merge",
    "merge_asof",
    "merge_ordered",
    "notna",
    "notnull",
    "offsets",
    "option_context",
    "options",
    "period_range",
    "pivot",
    "pivot_table",
    "plotting",
    "qcut",
    "read_clipboard",
    "read_csv",
    "read_excel",
    "read_feather",
    "read_fwf",
    "read_gbq",
    "read_hdf",
    "read_html",
    "read_json",
    "read_orc",
    "read_parquet",
    "read_pickle",
    "read_sas",
    "read_spss",
    "read_sql",
    "read_sql_query",
    "read_sql_table",
    "read_stata",
    "read_table",
    "read_xml",
    "reset_option",
    "set_eng_float_format",
    "set_option",
    "show_versions",
    "test",
    "testing",
    "timedelta_range",
    "to_datetime",
    "to_numeric",
    "to_pickle",
    "to_timedelta",
    "tseries",
    "unique",
    "value_counts",
    "wide_to_long",
]