File size: 47,201 Bytes
6370773
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
from __future__ import annotations

import operator
from typing import (
    TYPE_CHECKING,
    Literal,
    NoReturn,
    cast,
)

import numpy as np

from pandas._libs import lib
from pandas._libs.missing import is_matching_na
from pandas._libs.sparse import SparseIndex
import pandas._libs.testing as _testing
from pandas._libs.tslibs.np_datetime import compare_mismatched_resolutions

from pandas.core.dtypes.common import (
    is_bool,
    is_float_dtype,
    is_integer_dtype,
    is_number,
    is_numeric_dtype,
    needs_i8_conversion,
)
from pandas.core.dtypes.dtypes import (
    CategoricalDtype,
    DatetimeTZDtype,
    ExtensionDtype,
    NumpyEADtype,
)
from pandas.core.dtypes.missing import array_equivalent

import pandas as pd
from pandas import (
    Categorical,
    DataFrame,
    DatetimeIndex,
    Index,
    IntervalDtype,
    IntervalIndex,
    MultiIndex,
    PeriodIndex,
    RangeIndex,
    Series,
    TimedeltaIndex,
)
from pandas.core.arrays import (
    DatetimeArray,
    ExtensionArray,
    IntervalArray,
    PeriodArray,
    TimedeltaArray,
)
from pandas.core.arrays.datetimelike import DatetimeLikeArrayMixin
from pandas.core.arrays.string_ import StringDtype
from pandas.core.indexes.api import safe_sort_index

from pandas.io.formats.printing import pprint_thing

if TYPE_CHECKING:
    from pandas._typing import DtypeObj


def assert_almost_equal(
    left,
    right,
    check_dtype: bool | Literal["equiv"] = "equiv",
    rtol: float = 1.0e-5,
    atol: float = 1.0e-8,
    **kwargs,
) -> None:
    """
    Check that the left and right objects are approximately equal.

    By approximately equal, we refer to objects that are numbers or that
    contain numbers which may be equivalent to specific levels of precision.

    Parameters
    ----------
    left : object
    right : object
    check_dtype : bool or {'equiv'}, default 'equiv'
        Check dtype if both a and b are the same type. If 'equiv' is passed in,
        then `RangeIndex` and `Index` with int64 dtype are also considered
        equivalent when doing type checking.
    rtol : float, default 1e-5
        Relative tolerance.
    atol : float, default 1e-8
        Absolute tolerance.
    """
    if isinstance(left, Index):
        assert_index_equal(
            left,
            right,
            check_exact=False,
            exact=check_dtype,
            rtol=rtol,
            atol=atol,
            **kwargs,
        )

    elif isinstance(left, Series):
        assert_series_equal(
            left,
            right,
            check_exact=False,
            check_dtype=check_dtype,
            rtol=rtol,
            atol=atol,
            **kwargs,
        )

    elif isinstance(left, DataFrame):
        assert_frame_equal(
            left,
            right,
            check_exact=False,
            check_dtype=check_dtype,
            rtol=rtol,
            atol=atol,
            **kwargs,
        )

    else:
        # Other sequences.
        if check_dtype:
            if is_number(left) and is_number(right):
                # Do not compare numeric classes, like np.float64 and float.
                pass
            elif is_bool(left) and is_bool(right):
                # Do not compare bool classes, like np.bool_ and bool.
                pass
            else:
                if isinstance(left, np.ndarray) or isinstance(right, np.ndarray):
                    obj = "numpy array"
                else:
                    obj = "Input"
                assert_class_equal(left, right, obj=obj)

        # if we have "equiv", this becomes True
        _testing.assert_almost_equal(
            left, right, check_dtype=bool(check_dtype), rtol=rtol, atol=atol, **kwargs
        )


def _check_isinstance(left, right, cls) -> None:
    """
    Helper method for our assert_* methods that ensures that
    the two objects being compared have the right type before
    proceeding with the comparison.

    Parameters
    ----------
    left : The first object being compared.
    right : The second object being compared.
    cls : The class type to check against.

    Raises
    ------
    AssertionError : Either `left` or `right` is not an instance of `cls`.
    """
    cls_name = cls.__name__

    if not isinstance(left, cls):
        raise AssertionError(
            f"{cls_name} Expected type {cls}, found {type(left)} instead"
        )
    if not isinstance(right, cls):
        raise AssertionError(
            f"{cls_name} Expected type {cls}, found {type(right)} instead"
        )


def assert_dict_equal(left, right, compare_keys: bool = True) -> None:
    _check_isinstance(left, right, dict)
    _testing.assert_dict_equal(left, right, compare_keys=compare_keys)


def assert_index_equal(
    left: Index,
    right: Index,
    exact: bool | str = "equiv",
    check_names: bool = True,
    check_exact: bool = True,
    check_categorical: bool = True,
    check_order: bool = True,
    rtol: float = 1.0e-5,
    atol: float = 1.0e-8,
    obj: str = "Index",
) -> None:
    """
    Check that left and right Index are equal.

    Parameters
    ----------
    left : Index
    right : Index
    exact : bool or {'equiv'}, default 'equiv'
        Whether to check the Index class, dtype and inferred_type
        are identical. If 'equiv', then RangeIndex can be substituted for
        Index with an int64 dtype as well.
    check_names : bool, default True
        Whether to check the names attribute.
    check_exact : bool, default True
        Whether to compare number exactly.
    check_categorical : bool, default True
        Whether to compare internal Categorical exactly.
    check_order : bool, default True
        Whether to compare the order of index entries as well as their values.
        If True, both indexes must contain the same elements, in the same order.
        If False, both indexes must contain the same elements, but in any order.
    rtol : float, default 1e-5
        Relative tolerance. Only used when check_exact is False.
    atol : float, default 1e-8
        Absolute tolerance. Only used when check_exact is False.
    obj : str, default 'Index'
        Specify object name being compared, internally used to show appropriate
        assertion message.

    Examples
    --------
    >>> from pandas import testing as tm
    >>> a = pd.Index([1, 2, 3])
    >>> b = pd.Index([1, 2, 3])
    >>> tm.assert_index_equal(a, b)
    """
    __tracebackhide__ = True

    def _check_types(left, right, obj: str = "Index") -> None:
        if not exact:
            return

        assert_class_equal(left, right, exact=exact, obj=obj)
        assert_attr_equal("inferred_type", left, right, obj=obj)

        # Skip exact dtype checking when `check_categorical` is False
        if isinstance(left.dtype, CategoricalDtype) and isinstance(
            right.dtype, CategoricalDtype
        ):
            if check_categorical:
                assert_attr_equal("dtype", left, right, obj=obj)
                assert_index_equal(left.categories, right.categories, exact=exact)
            return

        assert_attr_equal("dtype", left, right, obj=obj)

    # instance validation
    _check_isinstance(left, right, Index)

    # class / dtype comparison
    _check_types(left, right, obj=obj)

    # level comparison
    if left.nlevels != right.nlevels:
        msg1 = f"{obj} levels are different"
        msg2 = f"{left.nlevels}, {left}"
        msg3 = f"{right.nlevels}, {right}"
        raise_assert_detail(obj, msg1, msg2, msg3)

    # length comparison
    if len(left) != len(right):
        msg1 = f"{obj} length are different"
        msg2 = f"{len(left)}, {left}"
        msg3 = f"{len(right)}, {right}"
        raise_assert_detail(obj, msg1, msg2, msg3)

    # If order doesn't matter then sort the index entries
    if not check_order:
        left = safe_sort_index(left)
        right = safe_sort_index(right)

    # MultiIndex special comparison for little-friendly error messages
    if isinstance(left, MultiIndex):
        right = cast(MultiIndex, right)

        for level in range(left.nlevels):
            lobj = f"MultiIndex level [{level}]"
            try:
                # try comparison on levels/codes to avoid densifying MultiIndex
                assert_index_equal(
                    left.levels[level],
                    right.levels[level],
                    exact=exact,
                    check_names=check_names,
                    check_exact=check_exact,
                    check_categorical=check_categorical,
                    rtol=rtol,
                    atol=atol,
                    obj=lobj,
                )
                assert_numpy_array_equal(left.codes[level], right.codes[level])
            except AssertionError:
                llevel = left.get_level_values(level)
                rlevel = right.get_level_values(level)

                assert_index_equal(
                    llevel,
                    rlevel,
                    exact=exact,
                    check_names=check_names,
                    check_exact=check_exact,
                    check_categorical=check_categorical,
                    rtol=rtol,
                    atol=atol,
                    obj=lobj,
                )
            # get_level_values may change dtype
            _check_types(left.levels[level], right.levels[level], obj=obj)

    # skip exact index checking when `check_categorical` is False
    elif check_exact and check_categorical:
        if not left.equals(right):
            mismatch = left._values != right._values

            if not isinstance(mismatch, np.ndarray):
                mismatch = cast("ExtensionArray", mismatch).fillna(True)

            diff = np.sum(mismatch.astype(int)) * 100.0 / len(left)
            msg = f"{obj} values are different ({np.round(diff, 5)} %)"
            raise_assert_detail(obj, msg, left, right)
    else:
        # if we have "equiv", this becomes True
        exact_bool = bool(exact)
        _testing.assert_almost_equal(
            left.values,
            right.values,
            rtol=rtol,
            atol=atol,
            check_dtype=exact_bool,
            obj=obj,
            lobj=left,
            robj=right,
        )

    # metadata comparison
    if check_names:
        assert_attr_equal("names", left, right, obj=obj)
    if isinstance(left, PeriodIndex) or isinstance(right, PeriodIndex):
        assert_attr_equal("dtype", left, right, obj=obj)
    if isinstance(left, IntervalIndex) or isinstance(right, IntervalIndex):
        assert_interval_array_equal(left._values, right._values)

    if check_categorical:
        if isinstance(left.dtype, CategoricalDtype) or isinstance(
            right.dtype, CategoricalDtype
        ):
            assert_categorical_equal(left._values, right._values, obj=f"{obj} category")


def assert_class_equal(
    left, right, exact: bool | str = True, obj: str = "Input"
) -> None:
    """
    Checks classes are equal.
    """
    __tracebackhide__ = True

    def repr_class(x):
        if isinstance(x, Index):
            # return Index as it is to include values in the error message
            return x

        return type(x).__name__

    def is_class_equiv(idx: Index) -> bool:
        """Classes that are a RangeIndex (sub-)instance or exactly an `Index` .

        This only checks class equivalence. There is a separate check that the
        dtype is int64.
        """
        return type(idx) is Index or isinstance(idx, RangeIndex)

    if type(left) == type(right):
        return

    if exact == "equiv":
        if is_class_equiv(left) and is_class_equiv(right):
            return

    msg = f"{obj} classes are different"
    raise_assert_detail(obj, msg, repr_class(left), repr_class(right))


def assert_attr_equal(attr: str, left, right, obj: str = "Attributes") -> None:
    """
    Check attributes are equal. Both objects must have attribute.

    Parameters
    ----------
    attr : str
        Attribute name being compared.
    left : object
    right : object
    obj : str, default 'Attributes'
        Specify object name being compared, internally used to show appropriate
        assertion message
    """
    __tracebackhide__ = True

    left_attr = getattr(left, attr)
    right_attr = getattr(right, attr)

    if left_attr is right_attr or is_matching_na(left_attr, right_attr):
        # e.g. both np.nan, both NaT, both pd.NA, ...
        return None

    try:
        result = left_attr == right_attr
    except TypeError:
        # datetimetz on rhs may raise TypeError
        result = False
    if (left_attr is pd.NA) ^ (right_attr is pd.NA):
        result = False
    elif not isinstance(result, bool):
        result = result.all()

    if not result:
        msg = f'Attribute "{attr}" are different'
        raise_assert_detail(obj, msg, left_attr, right_attr)
    return None


def assert_is_valid_plot_return_object(objs) -> None:
    from matplotlib.artist import Artist
    from matplotlib.axes import Axes

    if isinstance(objs, (Series, np.ndarray)):
        if isinstance(objs, Series):
            objs = objs._values
        for el in objs.ravel():
            msg = (
                "one of 'objs' is not a matplotlib Axes instance, "
                f"type encountered {repr(type(el).__name__)}"
            )
            assert isinstance(el, (Axes, dict)), msg
    else:
        msg = (
            "objs is neither an ndarray of Artist instances nor a single "
            "ArtistArtist instance, tuple, or dict, 'objs' is a "
            f"{repr(type(objs).__name__)}"
        )
        assert isinstance(objs, (Artist, tuple, dict)), msg


def assert_is_sorted(seq) -> None:
    """Assert that the sequence is sorted."""
    if isinstance(seq, (Index, Series)):
        seq = seq.values
    # sorting does not change precisions
    if isinstance(seq, np.ndarray):
        assert_numpy_array_equal(seq, np.sort(np.array(seq)))
    else:
        assert_extension_array_equal(seq, seq[seq.argsort()])


def assert_categorical_equal(
    left,
    right,
    check_dtype: bool = True,
    check_category_order: bool = True,
    obj: str = "Categorical",
) -> None:
    """
    Test that Categoricals are equivalent.

    Parameters
    ----------
    left : Categorical
    right : Categorical
    check_dtype : bool, default True
        Check that integer dtype of the codes are the same.
    check_category_order : bool, default True
        Whether the order of the categories should be compared, which
        implies identical integer codes.  If False, only the resulting
        values are compared.  The ordered attribute is
        checked regardless.
    obj : str, default 'Categorical'
        Specify object name being compared, internally used to show appropriate
        assertion message.
    """
    _check_isinstance(left, right, Categorical)

    exact: bool | str
    if isinstance(left.categories, RangeIndex) or isinstance(
        right.categories, RangeIndex
    ):
        exact = "equiv"
    else:
        # We still want to require exact matches for Index
        exact = True

    if check_category_order:
        assert_index_equal(
            left.categories, right.categories, obj=f"{obj}.categories", exact=exact
        )
        assert_numpy_array_equal(
            left.codes, right.codes, check_dtype=check_dtype, obj=f"{obj}.codes"
        )
    else:
        try:
            lc = left.categories.sort_values()
            rc = right.categories.sort_values()
        except TypeError:
            # e.g. '<' not supported between instances of 'int' and 'str'
            lc, rc = left.categories, right.categories
        assert_index_equal(lc, rc, obj=f"{obj}.categories", exact=exact)
        assert_index_equal(
            left.categories.take(left.codes),
            right.categories.take(right.codes),
            obj=f"{obj}.values",
            exact=exact,
        )

    assert_attr_equal("ordered", left, right, obj=obj)


def assert_interval_array_equal(
    left, right, exact: bool | Literal["equiv"] = "equiv", obj: str = "IntervalArray"
) -> None:
    """
    Test that two IntervalArrays are equivalent.

    Parameters
    ----------
    left, right : IntervalArray
        The IntervalArrays to compare.
    exact : bool or {'equiv'}, default 'equiv'
        Whether to check the Index class, dtype and inferred_type
        are identical. If 'equiv', then RangeIndex can be substituted for
        Index with an int64 dtype as well.
    obj : str, default 'IntervalArray'
        Specify object name being compared, internally used to show appropriate
        assertion message
    """
    _check_isinstance(left, right, IntervalArray)

    kwargs = {}
    if left._left.dtype.kind in "mM":
        # We have a DatetimeArray or TimedeltaArray
        kwargs["check_freq"] = False

    assert_equal(left._left, right._left, obj=f"{obj}.left", **kwargs)
    assert_equal(left._right, right._right, obj=f"{obj}.left", **kwargs)

    assert_attr_equal("closed", left, right, obj=obj)


def assert_period_array_equal(left, right, obj: str = "PeriodArray") -> None:
    _check_isinstance(left, right, PeriodArray)

    assert_numpy_array_equal(left._ndarray, right._ndarray, obj=f"{obj}._ndarray")
    assert_attr_equal("dtype", left, right, obj=obj)


def assert_datetime_array_equal(
    left, right, obj: str = "DatetimeArray", check_freq: bool = True
) -> None:
    __tracebackhide__ = True
    _check_isinstance(left, right, DatetimeArray)

    assert_numpy_array_equal(left._ndarray, right._ndarray, obj=f"{obj}._ndarray")
    if check_freq:
        assert_attr_equal("freq", left, right, obj=obj)
    assert_attr_equal("tz", left, right, obj=obj)


def assert_timedelta_array_equal(
    left, right, obj: str = "TimedeltaArray", check_freq: bool = True
) -> None:
    __tracebackhide__ = True
    _check_isinstance(left, right, TimedeltaArray)
    assert_numpy_array_equal(left._ndarray, right._ndarray, obj=f"{obj}._ndarray")
    if check_freq:
        assert_attr_equal("freq", left, right, obj=obj)


def raise_assert_detail(
    obj, message, left, right, diff=None, first_diff=None, index_values=None
) -> NoReturn:
    __tracebackhide__ = True

    msg = f"""{obj} are different

{message}"""

    if isinstance(index_values, Index):
        index_values = np.asarray(index_values)

    if isinstance(index_values, np.ndarray):
        msg += f"\n[index]: {pprint_thing(index_values)}"

    if isinstance(left, np.ndarray):
        left = pprint_thing(left)
    elif isinstance(left, (CategoricalDtype, NumpyEADtype, StringDtype)):
        left = repr(left)

    if isinstance(right, np.ndarray):
        right = pprint_thing(right)
    elif isinstance(right, (CategoricalDtype, NumpyEADtype, StringDtype)):
        right = repr(right)

    msg += f"""
[left]:  {left}
[right]: {right}"""

    if diff is not None:
        msg += f"\n[diff]: {diff}"

    if first_diff is not None:
        msg += f"\n{first_diff}"

    raise AssertionError(msg)


def assert_numpy_array_equal(
    left,
    right,
    strict_nan: bool = False,
    check_dtype: bool | Literal["equiv"] = True,
    err_msg=None,
    check_same=None,
    obj: str = "numpy array",
    index_values=None,
) -> None:
    """
    Check that 'np.ndarray' is equivalent.

    Parameters
    ----------
    left, right : numpy.ndarray or iterable
        The two arrays to be compared.
    strict_nan : bool, default False
        If True, consider NaN and None to be different.
    check_dtype : bool, default True
        Check dtype if both a and b are np.ndarray.
    err_msg : str, default None
        If provided, used as assertion message.
    check_same : None|'copy'|'same', default None
        Ensure left and right refer/do not refer to the same memory area.
    obj : str, default 'numpy array'
        Specify object name being compared, internally used to show appropriate
        assertion message.
    index_values : Index | numpy.ndarray, default None
        optional index (shared by both left and right), used in output.
    """
    __tracebackhide__ = True

    # instance validation
    # Show a detailed error message when classes are different
    assert_class_equal(left, right, obj=obj)
    # both classes must be an np.ndarray
    _check_isinstance(left, right, np.ndarray)

    def _get_base(obj):
        return obj.base if getattr(obj, "base", None) is not None else obj

    left_base = _get_base(left)
    right_base = _get_base(right)

    if check_same == "same":
        if left_base is not right_base:
            raise AssertionError(f"{repr(left_base)} is not {repr(right_base)}")
    elif check_same == "copy":
        if left_base is right_base:
            raise AssertionError(f"{repr(left_base)} is {repr(right_base)}")

    def _raise(left, right, err_msg) -> NoReturn:
        if err_msg is None:
            if left.shape != right.shape:
                raise_assert_detail(
                    obj, f"{obj} shapes are different", left.shape, right.shape
                )

            diff = 0
            for left_arr, right_arr in zip(left, right):
                # count up differences
                if not array_equivalent(left_arr, right_arr, strict_nan=strict_nan):
                    diff += 1

            diff = diff * 100.0 / left.size
            msg = f"{obj} values are different ({np.round(diff, 5)} %)"
            raise_assert_detail(obj, msg, left, right, index_values=index_values)

        raise AssertionError(err_msg)

    # compare shape and values
    if not array_equivalent(left, right, strict_nan=strict_nan):
        _raise(left, right, err_msg)

    if check_dtype:
        if isinstance(left, np.ndarray) and isinstance(right, np.ndarray):
            assert_attr_equal("dtype", left, right, obj=obj)


def assert_extension_array_equal(
    left,
    right,
    check_dtype: bool | Literal["equiv"] = True,
    index_values=None,
    check_exact: bool | lib.NoDefault = lib.no_default,
    rtol: float | lib.NoDefault = lib.no_default,
    atol: float | lib.NoDefault = lib.no_default,
    obj: str = "ExtensionArray",
) -> None:
    """
    Check that left and right ExtensionArrays are equal.

    Parameters
    ----------
    left, right : ExtensionArray
        The two arrays to compare.
    check_dtype : bool, default True
        Whether to check if the ExtensionArray dtypes are identical.
    index_values : Index | numpy.ndarray, default None
        Optional index (shared by both left and right), used in output.
    check_exact : bool, default False
        Whether to compare number exactly.

        .. versionchanged:: 2.2.0

            Defaults to True for integer dtypes if none of
            ``check_exact``, ``rtol`` and ``atol`` are specified.
    rtol : float, default 1e-5
        Relative tolerance. Only used when check_exact is False.
    atol : float, default 1e-8
        Absolute tolerance. Only used when check_exact is False.
    obj : str, default 'ExtensionArray'
        Specify object name being compared, internally used to show appropriate
        assertion message.

        .. versionadded:: 2.0.0

    Notes
    -----
    Missing values are checked separately from valid values.
    A mask of missing values is computed for each and checked to match.
    The remaining all-valid values are cast to object dtype and checked.

    Examples
    --------
    >>> from pandas import testing as tm
    >>> a = pd.Series([1, 2, 3, 4])
    >>> b, c = a.array, a.array
    >>> tm.assert_extension_array_equal(b, c)
    """
    if (
        check_exact is lib.no_default
        and rtol is lib.no_default
        and atol is lib.no_default
    ):
        check_exact = (
            is_numeric_dtype(left.dtype)
            and not is_float_dtype(left.dtype)
            or is_numeric_dtype(right.dtype)
            and not is_float_dtype(right.dtype)
        )
    elif check_exact is lib.no_default:
        check_exact = False

    rtol = rtol if rtol is not lib.no_default else 1.0e-5
    atol = atol if atol is not lib.no_default else 1.0e-8

    assert isinstance(left, ExtensionArray), "left is not an ExtensionArray"
    assert isinstance(right, ExtensionArray), "right is not an ExtensionArray"
    if check_dtype:
        assert_attr_equal("dtype", left, right, obj=f"Attributes of {obj}")

    if (
        isinstance(left, DatetimeLikeArrayMixin)
        and isinstance(right, DatetimeLikeArrayMixin)
        and type(right) == type(left)
    ):
        # GH 52449
        if not check_dtype and left.dtype.kind in "mM":
            if not isinstance(left.dtype, np.dtype):
                l_unit = cast(DatetimeTZDtype, left.dtype).unit
            else:
                l_unit = np.datetime_data(left.dtype)[0]
            if not isinstance(right.dtype, np.dtype):
                r_unit = cast(DatetimeTZDtype, right.dtype).unit
            else:
                r_unit = np.datetime_data(right.dtype)[0]
            if (
                l_unit != r_unit
                and compare_mismatched_resolutions(
                    left._ndarray, right._ndarray, operator.eq
                ).all()
            ):
                return
        # Avoid slow object-dtype comparisons
        # np.asarray for case where we have a np.MaskedArray
        assert_numpy_array_equal(
            np.asarray(left.asi8),
            np.asarray(right.asi8),
            index_values=index_values,
            obj=obj,
        )
        return

    left_na = np.asarray(left.isna())
    right_na = np.asarray(right.isna())
    assert_numpy_array_equal(
        left_na, right_na, obj=f"{obj} NA mask", index_values=index_values
    )

    left_valid = left[~left_na].to_numpy(dtype=object)
    right_valid = right[~right_na].to_numpy(dtype=object)
    if check_exact:
        assert_numpy_array_equal(
            left_valid, right_valid, obj=obj, index_values=index_values
        )
    else:
        _testing.assert_almost_equal(
            left_valid,
            right_valid,
            check_dtype=bool(check_dtype),
            rtol=rtol,
            atol=atol,
            obj=obj,
            index_values=index_values,
        )


# This could be refactored to use the NDFrame.equals method
def assert_series_equal(
    left,
    right,
    check_dtype: bool | Literal["equiv"] = True,
    check_index_type: bool | Literal["equiv"] = "equiv",
    check_series_type: bool = True,
    check_names: bool = True,
    check_exact: bool | lib.NoDefault = lib.no_default,
    check_datetimelike_compat: bool = False,
    check_categorical: bool = True,
    check_category_order: bool = True,
    check_freq: bool = True,
    check_flags: bool = True,
    rtol: float | lib.NoDefault = lib.no_default,
    atol: float | lib.NoDefault = lib.no_default,
    obj: str = "Series",
    *,
    check_index: bool = True,
    check_like: bool = False,
) -> None:
    """
    Check that left and right Series are equal.

    Parameters
    ----------
    left : Series
    right : Series
    check_dtype : bool, default True
        Whether to check the Series dtype is identical.
    check_index_type : bool or {'equiv'}, default 'equiv'
        Whether to check the Index class, dtype and inferred_type
        are identical.
    check_series_type : bool, default True
         Whether to check the Series class is identical.
    check_names : bool, default True
        Whether to check the Series and Index names attribute.
    check_exact : bool, default False
        Whether to compare number exactly.

        .. versionchanged:: 2.2.0

            Defaults to True for integer dtypes if none of
            ``check_exact``, ``rtol`` and ``atol`` are specified.
    check_datetimelike_compat : bool, default False
        Compare datetime-like which is comparable ignoring dtype.
    check_categorical : bool, default True
        Whether to compare internal Categorical exactly.
    check_category_order : bool, default True
        Whether to compare category order of internal Categoricals.
    check_freq : bool, default True
        Whether to check the `freq` attribute on a DatetimeIndex or TimedeltaIndex.
    check_flags : bool, default True
        Whether to check the `flags` attribute.
    rtol : float, default 1e-5
        Relative tolerance. Only used when check_exact is False.
    atol : float, default 1e-8
        Absolute tolerance. Only used when check_exact is False.
    obj : str, default 'Series'
        Specify object name being compared, internally used to show appropriate
        assertion message.
    check_index : bool, default True
        Whether to check index equivalence. If False, then compare only values.

        .. versionadded:: 1.3.0
    check_like : bool, default False
        If True, ignore the order of the index. Must be False if check_index is False.
        Note: same labels must be with the same data.

        .. versionadded:: 1.5.0

    Examples
    --------
    >>> from pandas import testing as tm
    >>> a = pd.Series([1, 2, 3, 4])
    >>> b = pd.Series([1, 2, 3, 4])
    >>> tm.assert_series_equal(a, b)
    """
    __tracebackhide__ = True
    check_exact_index = False if check_exact is lib.no_default else check_exact
    if (
        check_exact is lib.no_default
        and rtol is lib.no_default
        and atol is lib.no_default
    ):
        check_exact = (
            is_numeric_dtype(left.dtype)
            and not is_float_dtype(left.dtype)
            or is_numeric_dtype(right.dtype)
            and not is_float_dtype(right.dtype)
        )
    elif check_exact is lib.no_default:
        check_exact = False

    rtol = rtol if rtol is not lib.no_default else 1.0e-5
    atol = atol if atol is not lib.no_default else 1.0e-8

    if not check_index and check_like:
        raise ValueError("check_like must be False if check_index is False")

    # instance validation
    _check_isinstance(left, right, Series)

    if check_series_type:
        assert_class_equal(left, right, obj=obj)

    # length comparison
    if len(left) != len(right):
        msg1 = f"{len(left)}, {left.index}"
        msg2 = f"{len(right)}, {right.index}"
        raise_assert_detail(obj, "Series length are different", msg1, msg2)

    if check_flags:
        assert left.flags == right.flags, f"{repr(left.flags)} != {repr(right.flags)}"

    if check_index:
        # GH #38183
        assert_index_equal(
            left.index,
            right.index,
            exact=check_index_type,
            check_names=check_names,
            check_exact=check_exact_index,
            check_categorical=check_categorical,
            check_order=not check_like,
            rtol=rtol,
            atol=atol,
            obj=f"{obj}.index",
        )

    if check_like:
        left = left.reindex_like(right)

    if check_freq and isinstance(left.index, (DatetimeIndex, TimedeltaIndex)):
        lidx = left.index
        ridx = right.index
        assert lidx.freq == ridx.freq, (lidx.freq, ridx.freq)

    if check_dtype:
        # We want to skip exact dtype checking when `check_categorical`
        # is False. We'll still raise if only one is a `Categorical`,
        # regardless of `check_categorical`
        if (
            isinstance(left.dtype, CategoricalDtype)
            and isinstance(right.dtype, CategoricalDtype)
            and not check_categorical
        ):
            pass
        else:
            assert_attr_equal("dtype", left, right, obj=f"Attributes of {obj}")
    if check_exact:
        left_values = left._values
        right_values = right._values
        # Only check exact if dtype is numeric
        if isinstance(left_values, ExtensionArray) and isinstance(
            right_values, ExtensionArray
        ):
            assert_extension_array_equal(
                left_values,
                right_values,
                check_dtype=check_dtype,
                index_values=left.index,
                obj=str(obj),
            )
        else:
            # convert both to NumPy if not, check_dtype would raise earlier
            lv, rv = left_values, right_values
            if isinstance(left_values, ExtensionArray):
                lv = left_values.to_numpy()
            if isinstance(right_values, ExtensionArray):
                rv = right_values.to_numpy()
            assert_numpy_array_equal(
                lv,
                rv,
                check_dtype=check_dtype,
                obj=str(obj),
                index_values=left.index,
            )
    elif check_datetimelike_compat and (
        needs_i8_conversion(left.dtype) or needs_i8_conversion(right.dtype)
    ):
        # we want to check only if we have compat dtypes
        # e.g. integer and M|m are NOT compat, but we can simply check
        # the values in that case

        # datetimelike may have different objects (e.g. datetime.datetime
        # vs Timestamp) but will compare equal
        if not Index(left._values).equals(Index(right._values)):
            msg = (
                f"[datetimelike_compat=True] {left._values} "
                f"is not equal to {right._values}."
            )
            raise AssertionError(msg)
    elif isinstance(left.dtype, IntervalDtype) and isinstance(
        right.dtype, IntervalDtype
    ):
        assert_interval_array_equal(left.array, right.array)
    elif isinstance(left.dtype, CategoricalDtype) or isinstance(
        right.dtype, CategoricalDtype
    ):
        _testing.assert_almost_equal(
            left._values,
            right._values,
            rtol=rtol,
            atol=atol,
            check_dtype=bool(check_dtype),
            obj=str(obj),
            index_values=left.index,
        )
    elif isinstance(left.dtype, ExtensionDtype) and isinstance(
        right.dtype, ExtensionDtype
    ):
        assert_extension_array_equal(
            left._values,
            right._values,
            rtol=rtol,
            atol=atol,
            check_dtype=check_dtype,
            index_values=left.index,
            obj=str(obj),
        )
    elif is_extension_array_dtype_and_needs_i8_conversion(
        left.dtype, right.dtype
    ) or is_extension_array_dtype_and_needs_i8_conversion(right.dtype, left.dtype):
        assert_extension_array_equal(
            left._values,
            right._values,
            check_dtype=check_dtype,
            index_values=left.index,
            obj=str(obj),
        )
    elif needs_i8_conversion(left.dtype) and needs_i8_conversion(right.dtype):
        # DatetimeArray or TimedeltaArray
        assert_extension_array_equal(
            left._values,
            right._values,
            check_dtype=check_dtype,
            index_values=left.index,
            obj=str(obj),
        )
    else:
        _testing.assert_almost_equal(
            left._values,
            right._values,
            rtol=rtol,
            atol=atol,
            check_dtype=bool(check_dtype),
            obj=str(obj),
            index_values=left.index,
        )

    # metadata comparison
    if check_names:
        assert_attr_equal("name", left, right, obj=obj)

    if check_categorical:
        if isinstance(left.dtype, CategoricalDtype) or isinstance(
            right.dtype, CategoricalDtype
        ):
            assert_categorical_equal(
                left._values,
                right._values,
                obj=f"{obj} category",
                check_category_order=check_category_order,
            )


# This could be refactored to use the NDFrame.equals method
def assert_frame_equal(
    left,
    right,
    check_dtype: bool | Literal["equiv"] = True,
    check_index_type: bool | Literal["equiv"] = "equiv",
    check_column_type: bool | Literal["equiv"] = "equiv",
    check_frame_type: bool = True,
    check_names: bool = True,
    by_blocks: bool = False,
    check_exact: bool | lib.NoDefault = lib.no_default,
    check_datetimelike_compat: bool = False,
    check_categorical: bool = True,
    check_like: bool = False,
    check_freq: bool = True,
    check_flags: bool = True,
    rtol: float | lib.NoDefault = lib.no_default,
    atol: float | lib.NoDefault = lib.no_default,
    obj: str = "DataFrame",
) -> None:
    """
    Check that left and right DataFrame are equal.

    This function is intended to compare two DataFrames and output any
    differences. It is mostly intended for use in unit tests.
    Additional parameters allow varying the strictness of the
    equality checks performed.

    Parameters
    ----------
    left : DataFrame
        First DataFrame to compare.
    right : DataFrame
        Second DataFrame to compare.
    check_dtype : bool, default True
        Whether to check the DataFrame dtype is identical.
    check_index_type : bool or {'equiv'}, default 'equiv'
        Whether to check the Index class, dtype and inferred_type
        are identical.
    check_column_type : bool or {'equiv'}, default 'equiv'
        Whether to check the columns class, dtype and inferred_type
        are identical. Is passed as the ``exact`` argument of
        :func:`assert_index_equal`.
    check_frame_type : bool, default True
        Whether to check the DataFrame class is identical.
    check_names : bool, default True
        Whether to check that the `names` attribute for both the `index`
        and `column` attributes of the DataFrame is identical.
    by_blocks : bool, default False
        Specify how to compare internal data. If False, compare by columns.
        If True, compare by blocks.
    check_exact : bool, default False
        Whether to compare number exactly.

        .. versionchanged:: 2.2.0

            Defaults to True for integer dtypes if none of
            ``check_exact``, ``rtol`` and ``atol`` are specified.
    check_datetimelike_compat : bool, default False
        Compare datetime-like which is comparable ignoring dtype.
    check_categorical : bool, default True
        Whether to compare internal Categorical exactly.
    check_like : bool, default False
        If True, ignore the order of index & columns.
        Note: index labels must match their respective rows
        (same as in columns) - same labels must be with the same data.
    check_freq : bool, default True
        Whether to check the `freq` attribute on a DatetimeIndex or TimedeltaIndex.
    check_flags : bool, default True
        Whether to check the `flags` attribute.
    rtol : float, default 1e-5
        Relative tolerance. Only used when check_exact is False.
    atol : float, default 1e-8
        Absolute tolerance. Only used when check_exact is False.
    obj : str, default 'DataFrame'
        Specify object name being compared, internally used to show appropriate
        assertion message.

    See Also
    --------
    assert_series_equal : Equivalent method for asserting Series equality.
    DataFrame.equals : Check DataFrame equality.

    Examples
    --------
    This example shows comparing two DataFrames that are equal
    but with columns of differing dtypes.

    >>> from pandas.testing import assert_frame_equal
    >>> df1 = pd.DataFrame({'a': [1, 2], 'b': [3, 4]})
    >>> df2 = pd.DataFrame({'a': [1, 2], 'b': [3.0, 4.0]})

    df1 equals itself.

    >>> assert_frame_equal(df1, df1)

    df1 differs from df2 as column 'b' is of a different type.

    >>> assert_frame_equal(df1, df2)
    Traceback (most recent call last):
    ...
    AssertionError: Attributes of DataFrame.iloc[:, 1] (column name="b") are different

    Attribute "dtype" are different
    [left]:  int64
    [right]: float64

    Ignore differing dtypes in columns with check_dtype.

    >>> assert_frame_equal(df1, df2, check_dtype=False)
    """
    __tracebackhide__ = True
    _rtol = rtol if rtol is not lib.no_default else 1.0e-5
    _atol = atol if atol is not lib.no_default else 1.0e-8
    _check_exact = check_exact if check_exact is not lib.no_default else False

    # instance validation
    _check_isinstance(left, right, DataFrame)

    if check_frame_type:
        assert isinstance(left, type(right))
        # assert_class_equal(left, right, obj=obj)

    # shape comparison
    if left.shape != right.shape:
        raise_assert_detail(
            obj, f"{obj} shape mismatch", f"{repr(left.shape)}", f"{repr(right.shape)}"
        )

    if check_flags:
        assert left.flags == right.flags, f"{repr(left.flags)} != {repr(right.flags)}"

    # index comparison
    assert_index_equal(
        left.index,
        right.index,
        exact=check_index_type,
        check_names=check_names,
        check_exact=_check_exact,
        check_categorical=check_categorical,
        check_order=not check_like,
        rtol=_rtol,
        atol=_atol,
        obj=f"{obj}.index",
    )

    # column comparison
    assert_index_equal(
        left.columns,
        right.columns,
        exact=check_column_type,
        check_names=check_names,
        check_exact=_check_exact,
        check_categorical=check_categorical,
        check_order=not check_like,
        rtol=_rtol,
        atol=_atol,
        obj=f"{obj}.columns",
    )

    if check_like:
        left = left.reindex_like(right)

    # compare by blocks
    if by_blocks:
        rblocks = right._to_dict_of_blocks()
        lblocks = left._to_dict_of_blocks()
        for dtype in list(set(list(lblocks.keys()) + list(rblocks.keys()))):
            assert dtype in lblocks
            assert dtype in rblocks
            assert_frame_equal(
                lblocks[dtype], rblocks[dtype], check_dtype=check_dtype, obj=obj
            )

    # compare by columns
    else:
        for i, col in enumerate(left.columns):
            # We have already checked that columns match, so we can do
            #  fast location-based lookups
            lcol = left._ixs(i, axis=1)
            rcol = right._ixs(i, axis=1)

            # GH #38183
            # use check_index=False, because we do not want to run
            # assert_index_equal for each column,
            # as we already checked it for the whole dataframe before.
            assert_series_equal(
                lcol,
                rcol,
                check_dtype=check_dtype,
                check_index_type=check_index_type,
                check_exact=check_exact,
                check_names=check_names,
                check_datetimelike_compat=check_datetimelike_compat,
                check_categorical=check_categorical,
                check_freq=check_freq,
                obj=f'{obj}.iloc[:, {i}] (column name="{col}")',
                rtol=rtol,
                atol=atol,
                check_index=False,
                check_flags=False,
            )


def assert_equal(left, right, **kwargs) -> None:
    """
    Wrapper for tm.assert_*_equal to dispatch to the appropriate test function.

    Parameters
    ----------
    left, right : Index, Series, DataFrame, ExtensionArray, or np.ndarray
        The two items to be compared.
    **kwargs
        All keyword arguments are passed through to the underlying assert method.
    """
    __tracebackhide__ = True

    if isinstance(left, Index):
        assert_index_equal(left, right, **kwargs)
        if isinstance(left, (DatetimeIndex, TimedeltaIndex)):
            assert left.freq == right.freq, (left.freq, right.freq)
    elif isinstance(left, Series):
        assert_series_equal(left, right, **kwargs)
    elif isinstance(left, DataFrame):
        assert_frame_equal(left, right, **kwargs)
    elif isinstance(left, IntervalArray):
        assert_interval_array_equal(left, right, **kwargs)
    elif isinstance(left, PeriodArray):
        assert_period_array_equal(left, right, **kwargs)
    elif isinstance(left, DatetimeArray):
        assert_datetime_array_equal(left, right, **kwargs)
    elif isinstance(left, TimedeltaArray):
        assert_timedelta_array_equal(left, right, **kwargs)
    elif isinstance(left, ExtensionArray):
        assert_extension_array_equal(left, right, **kwargs)
    elif isinstance(left, np.ndarray):
        assert_numpy_array_equal(left, right, **kwargs)
    elif isinstance(left, str):
        assert kwargs == {}
        assert left == right
    else:
        assert kwargs == {}
        assert_almost_equal(left, right)


def assert_sp_array_equal(left, right) -> None:
    """
    Check that the left and right SparseArray are equal.

    Parameters
    ----------
    left : SparseArray
    right : SparseArray
    """
    _check_isinstance(left, right, pd.arrays.SparseArray)

    assert_numpy_array_equal(left.sp_values, right.sp_values)

    # SparseIndex comparison
    assert isinstance(left.sp_index, SparseIndex)
    assert isinstance(right.sp_index, SparseIndex)

    left_index = left.sp_index
    right_index = right.sp_index

    if not left_index.equals(right_index):
        raise_assert_detail(
            "SparseArray.index", "index are not equal", left_index, right_index
        )
    else:
        # Just ensure a
        pass

    assert_attr_equal("fill_value", left, right)
    assert_attr_equal("dtype", left, right)
    assert_numpy_array_equal(left.to_dense(), right.to_dense())


def assert_contains_all(iterable, dic) -> None:
    for k in iterable:
        assert k in dic, f"Did not contain item: {repr(k)}"


def assert_copy(iter1, iter2, **eql_kwargs) -> None:
    """
    iter1, iter2: iterables that produce elements
    comparable with assert_almost_equal

    Checks that the elements are equal, but not
    the same object. (Does not check that items
    in sequences are also not the same object)
    """
    for elem1, elem2 in zip(iter1, iter2):
        assert_almost_equal(elem1, elem2, **eql_kwargs)
        msg = (
            f"Expected object {repr(type(elem1))} and object {repr(type(elem2))} to be "
            "different objects, but they were the same object."
        )
        assert elem1 is not elem2, msg


def is_extension_array_dtype_and_needs_i8_conversion(
    left_dtype: DtypeObj, right_dtype: DtypeObj
) -> bool:
    """
    Checks that we have the combination of an ExtensionArraydtype and
    a dtype that should be converted to int64

    Returns
    -------
    bool

    Related to issue #37609
    """
    return isinstance(left_dtype, ExtensionDtype) and needs_i8_conversion(right_dtype)


def assert_indexing_slices_equivalent(ser: Series, l_slc: slice, i_slc: slice) -> None:
    """
    Check that ser.iloc[i_slc] matches ser.loc[l_slc] and, if applicable,
    ser[l_slc].
    """
    expected = ser.iloc[i_slc]

    assert_series_equal(ser.loc[l_slc], expected)

    if not is_integer_dtype(ser.index):
        # For integer indices, .loc and plain getitem are position-based.
        assert_series_equal(ser[l_slc], expected)


def assert_metadata_equivalent(
    left: DataFrame | Series, right: DataFrame | Series | None = None
) -> None:
    """
    Check that ._metadata attributes are equivalent.
    """
    for attr in left._metadata:
        val = getattr(left, attr, None)
        if right is None:
            assert val is None
        else:
            assert val == getattr(right, attr, None)