File size: 48,625 Bytes
6370773 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 |
"""
This file is very long and growing, but it was decided to not split it yet, as
it's still manageable (2020-03-17, ~1.1k LoC). See gh-31989
Instead of splitting it was decided to define sections here:
- Configuration / Settings
- Autouse fixtures
- Common arguments
- Missing values & co.
- Classes
- Indices
- Series'
- DataFrames
- Operators & Operations
- Data sets/files
- Time zones
- Dtypes
- Misc
"""
from __future__ import annotations
from collections import abc
from datetime import (
date,
datetime,
time,
timedelta,
timezone,
)
from decimal import Decimal
import operator
import os
from typing import (
TYPE_CHECKING,
Callable,
)
from dateutil.tz import (
tzlocal,
tzutc,
)
import hypothesis
from hypothesis import strategies as st
import numpy as np
import pytest
from pytz import (
FixedOffset,
utc,
)
from pandas._config.config import _get_option
import pandas.util._test_decorators as td
from pandas.core.dtypes.dtypes import (
DatetimeTZDtype,
IntervalDtype,
)
import pandas as pd
from pandas import (
CategoricalIndex,
DataFrame,
Interval,
IntervalIndex,
Period,
RangeIndex,
Series,
Timedelta,
Timestamp,
date_range,
period_range,
timedelta_range,
)
import pandas._testing as tm
from pandas.core import ops
from pandas.core.indexes.api import (
Index,
MultiIndex,
)
from pandas.util.version import Version
if TYPE_CHECKING:
from collections.abc import (
Hashable,
Iterator,
)
try:
import pyarrow as pa
except ImportError:
has_pyarrow = False
else:
del pa
has_pyarrow = True
import zoneinfo
try:
zoneinfo.ZoneInfo("UTC")
except zoneinfo.ZoneInfoNotFoundError:
zoneinfo = None # type: ignore[assignment]
# ----------------------------------------------------------------
# Configuration / Settings
# ----------------------------------------------------------------
# pytest
def pytest_addoption(parser) -> None:
parser.addoption(
"--no-strict-data-files",
action="store_false",
help="Don't fail if a test is skipped for missing data file.",
)
def ignore_doctest_warning(item: pytest.Item, path: str, message: str) -> None:
"""Ignore doctest warning.
Parameters
----------
item : pytest.Item
pytest test item.
path : str
Module path to Python object, e.g. "pandas.core.frame.DataFrame.append". A
warning will be filtered when item.name ends with in given path. So it is
sufficient to specify e.g. "DataFrame.append".
message : str
Message to be filtered.
"""
if item.name.endswith(path):
item.add_marker(pytest.mark.filterwarnings(f"ignore:{message}"))
def pytest_collection_modifyitems(items, config) -> None:
is_doctest = config.getoption("--doctest-modules") or config.getoption(
"--doctest-cython", default=False
)
# Warnings from doctests that can be ignored; place reason in comment above.
# Each entry specifies (path, message) - see the ignore_doctest_warning function
ignored_doctest_warnings = [
("is_int64_dtype", "is_int64_dtype is deprecated"),
("is_interval_dtype", "is_interval_dtype is deprecated"),
("is_period_dtype", "is_period_dtype is deprecated"),
("is_datetime64tz_dtype", "is_datetime64tz_dtype is deprecated"),
("is_categorical_dtype", "is_categorical_dtype is deprecated"),
("is_sparse", "is_sparse is deprecated"),
("DataFrameGroupBy.fillna", "DataFrameGroupBy.fillna is deprecated"),
("NDFrame.replace", "The 'method' keyword"),
("NDFrame.replace", "Series.replace without 'value'"),
("NDFrame.clip", "Downcasting behavior in Series and DataFrame methods"),
("Series.idxmin", "The behavior of Series.idxmin"),
("Series.idxmax", "The behavior of Series.idxmax"),
("SeriesGroupBy.fillna", "SeriesGroupBy.fillna is deprecated"),
("SeriesGroupBy.idxmin", "The behavior of Series.idxmin"),
("SeriesGroupBy.idxmax", "The behavior of Series.idxmax"),
# Docstring divides by zero to show behavior difference
("missing.mask_zero_div_zero", "divide by zero encountered"),
(
"to_pydatetime",
"The behavior of DatetimeProperties.to_pydatetime is deprecated",
),
(
"pandas.core.generic.NDFrame.bool",
"(Series|DataFrame).bool is now deprecated and will be removed "
"in future version of pandas",
),
(
"pandas.core.generic.NDFrame.first",
"first is deprecated and will be removed in a future version. "
"Please create a mask and filter using `.loc` instead",
),
(
"Resampler.fillna",
"DatetimeIndexResampler.fillna is deprecated",
),
(
"DataFrameGroupBy.fillna",
"DataFrameGroupBy.fillna with 'method' is deprecated",
),
(
"DataFrameGroupBy.fillna",
"DataFrame.fillna with 'method' is deprecated",
),
("read_parquet", "Passing a BlockManager to DataFrame is deprecated"),
]
if is_doctest:
for item in items:
for path, message in ignored_doctest_warnings:
ignore_doctest_warning(item, path, message)
hypothesis_health_checks = [hypothesis.HealthCheck.too_slow]
if Version(hypothesis.__version__) >= Version("6.83.2"):
hypothesis_health_checks.append(hypothesis.HealthCheck.differing_executors)
# Hypothesis
hypothesis.settings.register_profile(
"ci",
# Hypothesis timing checks are tuned for scalars by default, so we bump
# them from 200ms to 500ms per test case as the global default. If this
# is too short for a specific test, (a) try to make it faster, and (b)
# if it really is slow add `@settings(deadline=...)` with a working value,
# or `deadline=None` to entirely disable timeouts for that test.
# 2022-02-09: Changed deadline from 500 -> None. Deadline leads to
# non-actionable, flaky CI failures (# GH 24641, 44969, 45118, 44969)
deadline=None,
suppress_health_check=tuple(hypothesis_health_checks),
)
hypothesis.settings.load_profile("ci")
# Registering these strategies makes them globally available via st.from_type,
# which is use for offsets in tests/tseries/offsets/test_offsets_properties.py
for name in "MonthBegin MonthEnd BMonthBegin BMonthEnd".split():
cls = getattr(pd.tseries.offsets, name)
st.register_type_strategy(
cls, st.builds(cls, n=st.integers(-99, 99), normalize=st.booleans())
)
for name in "YearBegin YearEnd BYearBegin BYearEnd".split():
cls = getattr(pd.tseries.offsets, name)
st.register_type_strategy(
cls,
st.builds(
cls,
n=st.integers(-5, 5),
normalize=st.booleans(),
month=st.integers(min_value=1, max_value=12),
),
)
for name in "QuarterBegin QuarterEnd BQuarterBegin BQuarterEnd".split():
cls = getattr(pd.tseries.offsets, name)
st.register_type_strategy(
cls,
st.builds(
cls,
n=st.integers(-24, 24),
normalize=st.booleans(),
startingMonth=st.integers(min_value=1, max_value=12),
),
)
# ----------------------------------------------------------------
# Autouse fixtures
# ----------------------------------------------------------------
# https://github.com/pytest-dev/pytest/issues/11873
# Would like to avoid autouse=True, but cannot as of pytest 8.0.0
@pytest.fixture(autouse=True)
def add_doctest_imports(doctest_namespace) -> None:
"""
Make `np` and `pd` names available for doctests.
"""
doctest_namespace["np"] = np
doctest_namespace["pd"] = pd
@pytest.fixture(autouse=True)
def configure_tests() -> None:
"""
Configure settings for all tests and test modules.
"""
pd.set_option("chained_assignment", "raise")
# ----------------------------------------------------------------
# Common arguments
# ----------------------------------------------------------------
@pytest.fixture(params=[0, 1, "index", "columns"], ids=lambda x: f"axis={repr(x)}")
def axis(request):
"""
Fixture for returning the axis numbers of a DataFrame.
"""
return request.param
axis_frame = axis
@pytest.fixture(params=[1, "columns"], ids=lambda x: f"axis={repr(x)}")
def axis_1(request):
"""
Fixture for returning aliases of axis 1 of a DataFrame.
"""
return request.param
@pytest.fixture(params=[True, False, None])
def observed(request):
"""
Pass in the observed keyword to groupby for [True, False]
This indicates whether categoricals should return values for
values which are not in the grouper [False / None], or only values which
appear in the grouper [True]. [None] is supported for future compatibility
if we decide to change the default (and would need to warn if this
parameter is not passed).
"""
return request.param
@pytest.fixture(params=[True, False, None])
def ordered(request):
"""
Boolean 'ordered' parameter for Categorical.
"""
return request.param
@pytest.fixture(params=[True, False])
def skipna(request):
"""
Boolean 'skipna' parameter.
"""
return request.param
@pytest.fixture(params=["first", "last", False])
def keep(request):
"""
Valid values for the 'keep' parameter used in
.duplicated or .drop_duplicates
"""
return request.param
@pytest.fixture(params=["both", "neither", "left", "right"])
def inclusive_endpoints_fixture(request):
"""
Fixture for trying all interval 'inclusive' parameters.
"""
return request.param
@pytest.fixture(params=["left", "right", "both", "neither"])
def closed(request):
"""
Fixture for trying all interval closed parameters.
"""
return request.param
@pytest.fixture(params=["left", "right", "both", "neither"])
def other_closed(request):
"""
Secondary closed fixture to allow parametrizing over all pairs of closed.
"""
return request.param
@pytest.fixture(
params=[
None,
"gzip",
"bz2",
"zip",
"xz",
"tar",
pytest.param("zstd", marks=td.skip_if_no("zstandard")),
]
)
def compression(request):
"""
Fixture for trying common compression types in compression tests.
"""
return request.param
@pytest.fixture(
params=[
"gzip",
"bz2",
"zip",
"xz",
"tar",
pytest.param("zstd", marks=td.skip_if_no("zstandard")),
]
)
def compression_only(request):
"""
Fixture for trying common compression types in compression tests excluding
uncompressed case.
"""
return request.param
@pytest.fixture(params=[True, False])
def writable(request):
"""
Fixture that an array is writable.
"""
return request.param
@pytest.fixture(params=["inner", "outer", "left", "right"])
def join_type(request):
"""
Fixture for trying all types of join operations.
"""
return request.param
@pytest.fixture(params=["nlargest", "nsmallest"])
def nselect_method(request):
"""
Fixture for trying all nselect methods.
"""
return request.param
# ----------------------------------------------------------------
# Missing values & co.
# ----------------------------------------------------------------
@pytest.fixture(params=tm.NULL_OBJECTS, ids=lambda x: type(x).__name__)
def nulls_fixture(request):
"""
Fixture for each null type in pandas.
"""
return request.param
nulls_fixture2 = nulls_fixture # Generate cartesian product of nulls_fixture
@pytest.fixture(params=[None, np.nan, pd.NaT])
def unique_nulls_fixture(request):
"""
Fixture for each null type in pandas, each null type exactly once.
"""
return request.param
# Generate cartesian product of unique_nulls_fixture:
unique_nulls_fixture2 = unique_nulls_fixture
@pytest.fixture(params=tm.NP_NAT_OBJECTS, ids=lambda x: type(x).__name__)
def np_nat_fixture(request):
"""
Fixture for each NaT type in numpy.
"""
return request.param
# Generate cartesian product of np_nat_fixture:
np_nat_fixture2 = np_nat_fixture
# ----------------------------------------------------------------
# Classes
# ----------------------------------------------------------------
@pytest.fixture(params=[DataFrame, Series])
def frame_or_series(request):
"""
Fixture to parametrize over DataFrame and Series.
"""
return request.param
@pytest.fixture(params=[Index, Series], ids=["index", "series"])
def index_or_series(request):
"""
Fixture to parametrize over Index and Series, made necessary by a mypy
bug, giving an error:
List item 0 has incompatible type "Type[Series]"; expected "Type[PandasObject]"
See GH#29725
"""
return request.param
# Generate cartesian product of index_or_series fixture:
index_or_series2 = index_or_series
@pytest.fixture(params=[Index, Series, pd.array], ids=["index", "series", "array"])
def index_or_series_or_array(request):
"""
Fixture to parametrize over Index, Series, and ExtensionArray
"""
return request.param
@pytest.fixture(params=[Index, Series, DataFrame, pd.array], ids=lambda x: x.__name__)
def box_with_array(request):
"""
Fixture to test behavior for Index, Series, DataFrame, and pandas Array
classes
"""
return request.param
box_with_array2 = box_with_array
@pytest.fixture
def dict_subclass() -> type[dict]:
"""
Fixture for a dictionary subclass.
"""
class TestSubDict(dict):
def __init__(self, *args, **kwargs) -> None:
dict.__init__(self, *args, **kwargs)
return TestSubDict
@pytest.fixture
def non_dict_mapping_subclass() -> type[abc.Mapping]:
"""
Fixture for a non-mapping dictionary subclass.
"""
class TestNonDictMapping(abc.Mapping):
def __init__(self, underlying_dict) -> None:
self._data = underlying_dict
def __getitem__(self, key):
return self._data.__getitem__(key)
def __iter__(self) -> Iterator:
return self._data.__iter__()
def __len__(self) -> int:
return self._data.__len__()
return TestNonDictMapping
# ----------------------------------------------------------------
# Indices
# ----------------------------------------------------------------
@pytest.fixture
def multiindex_year_month_day_dataframe_random_data():
"""
DataFrame with 3 level MultiIndex (year, month, day) covering
first 100 business days from 2000-01-01 with random data
"""
tdf = DataFrame(
np.random.default_rng(2).standard_normal((100, 4)),
columns=Index(list("ABCD"), dtype=object),
index=date_range("2000-01-01", periods=100, freq="B"),
)
ymd = tdf.groupby([lambda x: x.year, lambda x: x.month, lambda x: x.day]).sum()
# use int64 Index, to make sure things work
ymd.index = ymd.index.set_levels([lev.astype("i8") for lev in ymd.index.levels])
ymd.index.set_names(["year", "month", "day"], inplace=True)
return ymd
@pytest.fixture
def lexsorted_two_level_string_multiindex() -> MultiIndex:
"""
2-level MultiIndex, lexsorted, with string names.
"""
return MultiIndex(
levels=[["foo", "bar", "baz", "qux"], ["one", "two", "three"]],
codes=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]],
names=["first", "second"],
)
@pytest.fixture
def multiindex_dataframe_random_data(
lexsorted_two_level_string_multiindex,
) -> DataFrame:
"""DataFrame with 2 level MultiIndex with random data"""
index = lexsorted_two_level_string_multiindex
return DataFrame(
np.random.default_rng(2).standard_normal((10, 3)),
index=index,
columns=Index(["A", "B", "C"], name="exp"),
)
def _create_multiindex():
"""
MultiIndex used to test the general functionality of this object
"""
# See Also: tests.multi.conftest.idx
major_axis = Index(["foo", "bar", "baz", "qux"])
minor_axis = Index(["one", "two"])
major_codes = np.array([0, 0, 1, 2, 3, 3])
minor_codes = np.array([0, 1, 0, 1, 0, 1])
index_names = ["first", "second"]
return MultiIndex(
levels=[major_axis, minor_axis],
codes=[major_codes, minor_codes],
names=index_names,
verify_integrity=False,
)
def _create_mi_with_dt64tz_level():
"""
MultiIndex with a level that is a tzaware DatetimeIndex.
"""
# GH#8367 round trip with pickle
return MultiIndex.from_product(
[[1, 2], ["a", "b"], date_range("20130101", periods=3, tz="US/Eastern")],
names=["one", "two", "three"],
)
indices_dict = {
"string": Index([f"pandas_{i}" for i in range(100)]),
"datetime": date_range("2020-01-01", periods=100),
"datetime-tz": date_range("2020-01-01", periods=100, tz="US/Pacific"),
"period": period_range("2020-01-01", periods=100, freq="D"),
"timedelta": timedelta_range(start="1 day", periods=100, freq="D"),
"range": RangeIndex(100),
"int8": Index(np.arange(100), dtype="int8"),
"int16": Index(np.arange(100), dtype="int16"),
"int32": Index(np.arange(100), dtype="int32"),
"int64": Index(np.arange(100), dtype="int64"),
"uint8": Index(np.arange(100), dtype="uint8"),
"uint16": Index(np.arange(100), dtype="uint16"),
"uint32": Index(np.arange(100), dtype="uint32"),
"uint64": Index(np.arange(100), dtype="uint64"),
"float32": Index(np.arange(100), dtype="float32"),
"float64": Index(np.arange(100), dtype="float64"),
"bool-object": Index([True, False] * 5, dtype=object),
"bool-dtype": Index([True, False] * 5, dtype=bool),
"complex64": Index(
np.arange(100, dtype="complex64") + 1.0j * np.arange(100, dtype="complex64")
),
"complex128": Index(
np.arange(100, dtype="complex128") + 1.0j * np.arange(100, dtype="complex128")
),
"categorical": CategoricalIndex(list("abcd") * 25),
"interval": IntervalIndex.from_breaks(np.linspace(0, 100, num=101)),
"empty": Index([]),
"tuples": MultiIndex.from_tuples(zip(["foo", "bar", "baz"], [1, 2, 3])),
"mi-with-dt64tz-level": _create_mi_with_dt64tz_level(),
"multi": _create_multiindex(),
"repeats": Index([0, 0, 1, 1, 2, 2]),
"nullable_int": Index(np.arange(100), dtype="Int64"),
"nullable_uint": Index(np.arange(100), dtype="UInt16"),
"nullable_float": Index(np.arange(100), dtype="Float32"),
"nullable_bool": Index(np.arange(100).astype(bool), dtype="boolean"),
"string-python": Index(
pd.array([f"pandas_{i}" for i in range(100)], dtype="string[python]")
),
}
if has_pyarrow:
idx = Index(pd.array([f"pandas_{i}" for i in range(100)], dtype="string[pyarrow]"))
indices_dict["string-pyarrow"] = idx
@pytest.fixture(params=indices_dict.keys())
def index(request):
"""
Fixture for many "simple" kinds of indices.
These indices are unlikely to cover corner cases, e.g.
- no names
- no NaTs/NaNs
- no values near implementation bounds
- ...
"""
# copy to avoid mutation, e.g. setting .name
return indices_dict[request.param].copy()
# Needed to generate cartesian product of indices
index_fixture2 = index
@pytest.fixture(
params=[
key for key, value in indices_dict.items() if not isinstance(value, MultiIndex)
]
)
def index_flat(request):
"""
index fixture, but excluding MultiIndex cases.
"""
key = request.param
return indices_dict[key].copy()
# Alias so we can test with cartesian product of index_flat
index_flat2 = index_flat
@pytest.fixture(
params=[
key
for key, value in indices_dict.items()
if not (
key.startswith(("int", "uint", "float"))
or key in ["range", "empty", "repeats", "bool-dtype"]
)
and not isinstance(value, MultiIndex)
]
)
def index_with_missing(request):
"""
Fixture for indices with missing values.
Integer-dtype and empty cases are excluded because they cannot hold missing
values.
MultiIndex is excluded because isna() is not defined for MultiIndex.
"""
# GH 35538. Use deep copy to avoid illusive bug on np-dev
# GHA pipeline that writes into indices_dict despite copy
ind = indices_dict[request.param].copy(deep=True)
vals = ind.values.copy()
if request.param in ["tuples", "mi-with-dt64tz-level", "multi"]:
# For setting missing values in the top level of MultiIndex
vals = ind.tolist()
vals[0] = (None,) + vals[0][1:]
vals[-1] = (None,) + vals[-1][1:]
return MultiIndex.from_tuples(vals)
else:
vals[0] = None
vals[-1] = None
return type(ind)(vals)
# ----------------------------------------------------------------
# Series'
# ----------------------------------------------------------------
@pytest.fixture
def string_series() -> Series:
"""
Fixture for Series of floats with Index of unique strings
"""
return Series(
np.arange(30, dtype=np.float64) * 1.1,
index=Index([f"i_{i}" for i in range(30)], dtype=object),
name="series",
)
@pytest.fixture
def object_series() -> Series:
"""
Fixture for Series of dtype object with Index of unique strings
"""
data = [f"foo_{i}" for i in range(30)]
index = Index([f"bar_{i}" for i in range(30)], dtype=object)
return Series(data, index=index, name="objects", dtype=object)
@pytest.fixture
def datetime_series() -> Series:
"""
Fixture for Series of floats with DatetimeIndex
"""
return Series(
np.random.default_rng(2).standard_normal(30),
index=date_range("2000-01-01", periods=30, freq="B"),
name="ts",
)
def _create_series(index):
"""Helper for the _series dict"""
size = len(index)
data = np.random.default_rng(2).standard_normal(size)
return Series(data, index=index, name="a", copy=False)
_series = {
f"series-with-{index_id}-index": _create_series(index)
for index_id, index in indices_dict.items()
}
@pytest.fixture
def series_with_simple_index(index) -> Series:
"""
Fixture for tests on series with changing types of indices.
"""
return _create_series(index)
_narrow_series = {
f"{dtype.__name__}-series": Series(
range(30), index=[f"i-{i}" for i in range(30)], name="a", dtype=dtype
)
for dtype in tm.NARROW_NP_DTYPES
}
_index_or_series_objs = {**indices_dict, **_series, **_narrow_series}
@pytest.fixture(params=_index_or_series_objs.keys())
def index_or_series_obj(request):
"""
Fixture for tests on indexes, series and series with a narrow dtype
copy to avoid mutation, e.g. setting .name
"""
return _index_or_series_objs[request.param].copy(deep=True)
_typ_objects_series = {
f"{dtype.__name__}-series": Series(dtype) for dtype in tm.PYTHON_DATA_TYPES
}
_index_or_series_memory_objs = {
**indices_dict,
**_series,
**_narrow_series,
**_typ_objects_series,
}
@pytest.fixture(params=_index_or_series_memory_objs.keys())
def index_or_series_memory_obj(request):
"""
Fixture for tests on indexes, series, series with a narrow dtype and
series with empty objects type
copy to avoid mutation, e.g. setting .name
"""
return _index_or_series_memory_objs[request.param].copy(deep=True)
# ----------------------------------------------------------------
# DataFrames
# ----------------------------------------------------------------
@pytest.fixture
def int_frame() -> DataFrame:
"""
Fixture for DataFrame of ints with index of unique strings
Columns are ['A', 'B', 'C', 'D']
"""
return DataFrame(
np.ones((30, 4), dtype=np.int64),
index=Index([f"foo_{i}" for i in range(30)], dtype=object),
columns=Index(list("ABCD"), dtype=object),
)
@pytest.fixture
def float_frame() -> DataFrame:
"""
Fixture for DataFrame of floats with index of unique strings
Columns are ['A', 'B', 'C', 'D'].
"""
return DataFrame(
np.random.default_rng(2).standard_normal((30, 4)),
index=Index([f"foo_{i}" for i in range(30)]),
columns=Index(list("ABCD")),
)
@pytest.fixture
def rand_series_with_duplicate_datetimeindex() -> Series:
"""
Fixture for Series with a DatetimeIndex that has duplicates.
"""
dates = [
datetime(2000, 1, 2),
datetime(2000, 1, 2),
datetime(2000, 1, 2),
datetime(2000, 1, 3),
datetime(2000, 1, 3),
datetime(2000, 1, 3),
datetime(2000, 1, 4),
datetime(2000, 1, 4),
datetime(2000, 1, 4),
datetime(2000, 1, 5),
]
return Series(np.random.default_rng(2).standard_normal(len(dates)), index=dates)
# ----------------------------------------------------------------
# Scalars
# ----------------------------------------------------------------
@pytest.fixture(
params=[
(Interval(left=0, right=5), IntervalDtype("int64", "right")),
(Interval(left=0.1, right=0.5), IntervalDtype("float64", "right")),
(Period("2012-01", freq="M"), "period[M]"),
(Period("2012-02-01", freq="D"), "period[D]"),
(
Timestamp("2011-01-01", tz="US/Eastern"),
DatetimeTZDtype(unit="s", tz="US/Eastern"),
),
(Timedelta(seconds=500), "timedelta64[ns]"),
]
)
def ea_scalar_and_dtype(request):
return request.param
# ----------------------------------------------------------------
# Operators & Operations
# ----------------------------------------------------------------
@pytest.fixture(params=tm.arithmetic_dunder_methods)
def all_arithmetic_operators(request):
"""
Fixture for dunder names for common arithmetic operations.
"""
return request.param
@pytest.fixture(
params=[
operator.add,
ops.radd,
operator.sub,
ops.rsub,
operator.mul,
ops.rmul,
operator.truediv,
ops.rtruediv,
operator.floordiv,
ops.rfloordiv,
operator.mod,
ops.rmod,
operator.pow,
ops.rpow,
operator.eq,
operator.ne,
operator.lt,
operator.le,
operator.gt,
operator.ge,
operator.and_,
ops.rand_,
operator.xor,
ops.rxor,
operator.or_,
ops.ror_,
]
)
def all_binary_operators(request):
"""
Fixture for operator and roperator arithmetic, comparison, and logical ops.
"""
return request.param
@pytest.fixture(
params=[
operator.add,
ops.radd,
operator.sub,
ops.rsub,
operator.mul,
ops.rmul,
operator.truediv,
ops.rtruediv,
operator.floordiv,
ops.rfloordiv,
operator.mod,
ops.rmod,
operator.pow,
ops.rpow,
]
)
def all_arithmetic_functions(request):
"""
Fixture for operator and roperator arithmetic functions.
Notes
-----
This includes divmod and rdivmod, whereas all_arithmetic_operators
does not.
"""
return request.param
_all_numeric_reductions = [
"count",
"sum",
"max",
"min",
"mean",
"prod",
"std",
"var",
"median",
"kurt",
"skew",
"sem",
]
@pytest.fixture(params=_all_numeric_reductions)
def all_numeric_reductions(request):
"""
Fixture for numeric reduction names.
"""
return request.param
_all_boolean_reductions = ["all", "any"]
@pytest.fixture(params=_all_boolean_reductions)
def all_boolean_reductions(request):
"""
Fixture for boolean reduction names.
"""
return request.param
_all_reductions = _all_numeric_reductions + _all_boolean_reductions
@pytest.fixture(params=_all_reductions)
def all_reductions(request):
"""
Fixture for all (boolean + numeric) reduction names.
"""
return request.param
@pytest.fixture(
params=[
operator.eq,
operator.ne,
operator.gt,
operator.ge,
operator.lt,
operator.le,
]
)
def comparison_op(request):
"""
Fixture for operator module comparison functions.
"""
return request.param
@pytest.fixture(params=["__le__", "__lt__", "__ge__", "__gt__"])
def compare_operators_no_eq_ne(request):
"""
Fixture for dunder names for compare operations except == and !=
* >=
* >
* <
* <=
"""
return request.param
@pytest.fixture(
params=["__and__", "__rand__", "__or__", "__ror__", "__xor__", "__rxor__"]
)
def all_logical_operators(request):
"""
Fixture for dunder names for common logical operations
* |
* &
* ^
"""
return request.param
_all_numeric_accumulations = ["cumsum", "cumprod", "cummin", "cummax"]
@pytest.fixture(params=_all_numeric_accumulations)
def all_numeric_accumulations(request):
"""
Fixture for numeric accumulation names
"""
return request.param
# ----------------------------------------------------------------
# Data sets/files
# ----------------------------------------------------------------
@pytest.fixture
def strict_data_files(pytestconfig):
"""
Returns the configuration for the test setting `--no-strict-data-files`.
"""
return pytestconfig.getoption("--no-strict-data-files")
@pytest.fixture
def datapath(strict_data_files: str) -> Callable[..., str]:
"""
Get the path to a data file.
Parameters
----------
path : str
Path to the file, relative to ``pandas/tests/``
Returns
-------
path including ``pandas/tests``.
Raises
------
ValueError
If the path doesn't exist and the --no-strict-data-files option is not set.
"""
BASE_PATH = os.path.join(os.path.dirname(__file__), "tests")
def deco(*args):
path = os.path.join(BASE_PATH, *args)
if not os.path.exists(path):
if strict_data_files:
raise ValueError(
f"Could not find file {path} and --no-strict-data-files is not set."
)
pytest.skip(f"Could not find {path}.")
return path
return deco
# ----------------------------------------------------------------
# Time zones
# ----------------------------------------------------------------
TIMEZONES = [
None,
"UTC",
"US/Eastern",
"Asia/Tokyo",
"dateutil/US/Pacific",
"dateutil/Asia/Singapore",
"+01:15",
"-02:15",
"UTC+01:15",
"UTC-02:15",
tzutc(),
tzlocal(),
FixedOffset(300),
FixedOffset(0),
FixedOffset(-300),
timezone.utc,
timezone(timedelta(hours=1)),
timezone(timedelta(hours=-1), name="foo"),
]
if zoneinfo is not None:
TIMEZONES.extend(
[
zoneinfo.ZoneInfo("US/Pacific"), # type: ignore[list-item]
zoneinfo.ZoneInfo("UTC"), # type: ignore[list-item]
]
)
TIMEZONE_IDS = [repr(i) for i in TIMEZONES]
@td.parametrize_fixture_doc(str(TIMEZONE_IDS))
@pytest.fixture(params=TIMEZONES, ids=TIMEZONE_IDS)
def tz_naive_fixture(request):
"""
Fixture for trying timezones including default (None): {0}
"""
return request.param
@td.parametrize_fixture_doc(str(TIMEZONE_IDS[1:]))
@pytest.fixture(params=TIMEZONES[1:], ids=TIMEZONE_IDS[1:])
def tz_aware_fixture(request):
"""
Fixture for trying explicit timezones: {0}
"""
return request.param
# Generate cartesian product of tz_aware_fixture:
tz_aware_fixture2 = tz_aware_fixture
_UTCS = ["utc", "dateutil/UTC", utc, tzutc(), timezone.utc]
if zoneinfo is not None:
_UTCS.append(zoneinfo.ZoneInfo("UTC"))
@pytest.fixture(params=_UTCS)
def utc_fixture(request):
"""
Fixture to provide variants of UTC timezone strings and tzinfo objects.
"""
return request.param
utc_fixture2 = utc_fixture
@pytest.fixture(params=["s", "ms", "us", "ns"])
def unit(request):
"""
datetime64 units we support.
"""
return request.param
unit2 = unit
# ----------------------------------------------------------------
# Dtypes
# ----------------------------------------------------------------
@pytest.fixture(params=tm.STRING_DTYPES)
def string_dtype(request):
"""
Parametrized fixture for string dtypes.
* str
* 'str'
* 'U'
"""
return request.param
@pytest.fixture(
params=[
"string[python]",
pytest.param("string[pyarrow]", marks=td.skip_if_no("pyarrow")),
]
)
def nullable_string_dtype(request):
"""
Parametrized fixture for string dtypes.
* 'string[python]'
* 'string[pyarrow]'
"""
return request.param
@pytest.fixture(
params=[
"python",
pytest.param("pyarrow", marks=td.skip_if_no("pyarrow")),
pytest.param("pyarrow_numpy", marks=td.skip_if_no("pyarrow")),
]
)
def string_storage(request):
"""
Parametrized fixture for pd.options.mode.string_storage.
* 'python'
* 'pyarrow'
* 'pyarrow_numpy'
"""
return request.param
@pytest.fixture(
params=[
"numpy_nullable",
pytest.param("pyarrow", marks=td.skip_if_no("pyarrow")),
]
)
def dtype_backend(request):
"""
Parametrized fixture for pd.options.mode.string_storage.
* 'python'
* 'pyarrow'
"""
return request.param
# Alias so we can test with cartesian product of string_storage
string_storage2 = string_storage
@pytest.fixture(params=tm.BYTES_DTYPES)
def bytes_dtype(request):
"""
Parametrized fixture for bytes dtypes.
* bytes
* 'bytes'
"""
return request.param
@pytest.fixture(params=tm.OBJECT_DTYPES)
def object_dtype(request):
"""
Parametrized fixture for object dtypes.
* object
* 'object'
"""
return request.param
@pytest.fixture(
params=[
"object",
"string[python]",
pytest.param("string[pyarrow]", marks=td.skip_if_no("pyarrow")),
pytest.param("string[pyarrow_numpy]", marks=td.skip_if_no("pyarrow")),
]
)
def any_string_dtype(request):
"""
Parametrized fixture for string dtypes.
* 'object'
* 'string[python]'
* 'string[pyarrow]'
"""
return request.param
@pytest.fixture(params=tm.DATETIME64_DTYPES)
def datetime64_dtype(request):
"""
Parametrized fixture for datetime64 dtypes.
* 'datetime64[ns]'
* 'M8[ns]'
"""
return request.param
@pytest.fixture(params=tm.TIMEDELTA64_DTYPES)
def timedelta64_dtype(request):
"""
Parametrized fixture for timedelta64 dtypes.
* 'timedelta64[ns]'
* 'm8[ns]'
"""
return request.param
@pytest.fixture
def fixed_now_ts() -> Timestamp:
"""
Fixture emits fixed Timestamp.now()
"""
return Timestamp( # pyright: ignore[reportGeneralTypeIssues]
year=2021, month=1, day=1, hour=12, minute=4, second=13, microsecond=22
)
@pytest.fixture(params=tm.FLOAT_NUMPY_DTYPES)
def float_numpy_dtype(request):
"""
Parameterized fixture for float dtypes.
* float
* 'float32'
* 'float64'
"""
return request.param
@pytest.fixture(params=tm.FLOAT_EA_DTYPES)
def float_ea_dtype(request):
"""
Parameterized fixture for float dtypes.
* 'Float32'
* 'Float64'
"""
return request.param
@pytest.fixture(params=tm.ALL_FLOAT_DTYPES)
def any_float_dtype(request):
"""
Parameterized fixture for float dtypes.
* float
* 'float32'
* 'float64'
* 'Float32'
* 'Float64'
"""
return request.param
@pytest.fixture(params=tm.COMPLEX_DTYPES)
def complex_dtype(request):
"""
Parameterized fixture for complex dtypes.
* complex
* 'complex64'
* 'complex128'
"""
return request.param
@pytest.fixture(params=tm.COMPLEX_FLOAT_DTYPES)
def complex_or_float_dtype(request):
"""
Parameterized fixture for complex and numpy float dtypes.
* complex
* 'complex64'
* 'complex128'
* float
* 'float32'
* 'float64'
"""
return request.param
@pytest.fixture(params=tm.SIGNED_INT_NUMPY_DTYPES)
def any_signed_int_numpy_dtype(request):
"""
Parameterized fixture for signed integer dtypes.
* int
* 'int8'
* 'int16'
* 'int32'
* 'int64'
"""
return request.param
@pytest.fixture(params=tm.UNSIGNED_INT_NUMPY_DTYPES)
def any_unsigned_int_numpy_dtype(request):
"""
Parameterized fixture for unsigned integer dtypes.
* 'uint8'
* 'uint16'
* 'uint32'
* 'uint64'
"""
return request.param
@pytest.fixture(params=tm.ALL_INT_NUMPY_DTYPES)
def any_int_numpy_dtype(request):
"""
Parameterized fixture for any integer dtype.
* int
* 'int8'
* 'uint8'
* 'int16'
* 'uint16'
* 'int32'
* 'uint32'
* 'int64'
* 'uint64'
"""
return request.param
@pytest.fixture(params=tm.ALL_INT_EA_DTYPES)
def any_int_ea_dtype(request):
"""
Parameterized fixture for any nullable integer dtype.
* 'UInt8'
* 'Int8'
* 'UInt16'
* 'Int16'
* 'UInt32'
* 'Int32'
* 'UInt64'
* 'Int64'
"""
return request.param
@pytest.fixture(params=tm.ALL_INT_DTYPES)
def any_int_dtype(request):
"""
Parameterized fixture for any nullable integer dtype.
* int
* 'int8'
* 'uint8'
* 'int16'
* 'uint16'
* 'int32'
* 'uint32'
* 'int64'
* 'uint64'
* 'UInt8'
* 'Int8'
* 'UInt16'
* 'Int16'
* 'UInt32'
* 'Int32'
* 'UInt64'
* 'Int64'
"""
return request.param
@pytest.fixture(params=tm.ALL_INT_EA_DTYPES + tm.FLOAT_EA_DTYPES)
def any_numeric_ea_dtype(request):
"""
Parameterized fixture for any nullable integer dtype and
any float ea dtypes.
* 'UInt8'
* 'Int8'
* 'UInt16'
* 'Int16'
* 'UInt32'
* 'Int32'
* 'UInt64'
* 'Int64'
* 'Float32'
* 'Float64'
"""
return request.param
# Unsupported operand types for + ("List[Union[str, ExtensionDtype, dtype[Any],
# Type[object]]]" and "List[str]")
@pytest.fixture(
params=tm.ALL_INT_EA_DTYPES
+ tm.FLOAT_EA_DTYPES
+ tm.ALL_INT_PYARROW_DTYPES_STR_REPR
+ tm.FLOAT_PYARROW_DTYPES_STR_REPR # type: ignore[operator]
)
def any_numeric_ea_and_arrow_dtype(request):
"""
Parameterized fixture for any nullable integer dtype and
any float ea dtypes.
* 'UInt8'
* 'Int8'
* 'UInt16'
* 'Int16'
* 'UInt32'
* 'Int32'
* 'UInt64'
* 'Int64'
* 'Float32'
* 'Float64'
* 'uint8[pyarrow]'
* 'int8[pyarrow]'
* 'uint16[pyarrow]'
* 'int16[pyarrow]'
* 'uint32[pyarrow]'
* 'int32[pyarrow]'
* 'uint64[pyarrow]'
* 'int64[pyarrow]'
* 'float32[pyarrow]'
* 'float64[pyarrow]'
"""
return request.param
@pytest.fixture(params=tm.SIGNED_INT_EA_DTYPES)
def any_signed_int_ea_dtype(request):
"""
Parameterized fixture for any signed nullable integer dtype.
* 'Int8'
* 'Int16'
* 'Int32'
* 'Int64'
"""
return request.param
@pytest.fixture(params=tm.ALL_REAL_NUMPY_DTYPES)
def any_real_numpy_dtype(request):
"""
Parameterized fixture for any (purely) real numeric dtype.
* int
* 'int8'
* 'uint8'
* 'int16'
* 'uint16'
* 'int32'
* 'uint32'
* 'int64'
* 'uint64'
* float
* 'float32'
* 'float64'
"""
return request.param
@pytest.fixture(params=tm.ALL_REAL_DTYPES)
def any_real_numeric_dtype(request):
"""
Parameterized fixture for any (purely) real numeric dtype.
* int
* 'int8'
* 'uint8'
* 'int16'
* 'uint16'
* 'int32'
* 'uint32'
* 'int64'
* 'uint64'
* float
* 'float32'
* 'float64'
and associated ea dtypes.
"""
return request.param
@pytest.fixture(params=tm.ALL_NUMPY_DTYPES)
def any_numpy_dtype(request):
"""
Parameterized fixture for all numpy dtypes.
* bool
* 'bool'
* int
* 'int8'
* 'uint8'
* 'int16'
* 'uint16'
* 'int32'
* 'uint32'
* 'int64'
* 'uint64'
* float
* 'float32'
* 'float64'
* complex
* 'complex64'
* 'complex128'
* str
* 'str'
* 'U'
* bytes
* 'bytes'
* 'datetime64[ns]'
* 'M8[ns]'
* 'timedelta64[ns]'
* 'm8[ns]'
* object
* 'object'
"""
return request.param
@pytest.fixture(params=tm.ALL_REAL_NULLABLE_DTYPES)
def any_real_nullable_dtype(request):
"""
Parameterized fixture for all real dtypes that can hold NA.
* float
* 'float32'
* 'float64'
* 'Float32'
* 'Float64'
* 'UInt8'
* 'UInt16'
* 'UInt32'
* 'UInt64'
* 'Int8'
* 'Int16'
* 'Int32'
* 'Int64'
* 'uint8[pyarrow]'
* 'uint16[pyarrow]'
* 'uint32[pyarrow]'
* 'uint64[pyarrow]'
* 'int8[pyarrow]'
* 'int16[pyarrow]'
* 'int32[pyarrow]'
* 'int64[pyarrow]'
* 'float[pyarrow]'
* 'double[pyarrow]'
"""
return request.param
@pytest.fixture(params=tm.ALL_NUMERIC_DTYPES)
def any_numeric_dtype(request):
"""
Parameterized fixture for all numeric dtypes.
* int
* 'int8'
* 'uint8'
* 'int16'
* 'uint16'
* 'int32'
* 'uint32'
* 'int64'
* 'uint64'
* float
* 'float32'
* 'float64'
* complex
* 'complex64'
* 'complex128'
* 'UInt8'
* 'Int8'
* 'UInt16'
* 'Int16'
* 'UInt32'
* 'Int32'
* 'UInt64'
* 'Int64'
* 'Float32'
* 'Float64'
"""
return request.param
# categoricals are handled separately
_any_skipna_inferred_dtype = [
("string", ["a", np.nan, "c"]),
("string", ["a", pd.NA, "c"]),
("mixed", ["a", pd.NaT, "c"]), # pd.NaT not considered valid by is_string_array
("bytes", [b"a", np.nan, b"c"]),
("empty", [np.nan, np.nan, np.nan]),
("empty", []),
("mixed-integer", ["a", np.nan, 2]),
("mixed", ["a", np.nan, 2.0]),
("floating", [1.0, np.nan, 2.0]),
("integer", [1, np.nan, 2]),
("mixed-integer-float", [1, np.nan, 2.0]),
("decimal", [Decimal(1), np.nan, Decimal(2)]),
("boolean", [True, np.nan, False]),
("boolean", [True, pd.NA, False]),
("datetime64", [np.datetime64("2013-01-01"), np.nan, np.datetime64("2018-01-01")]),
("datetime", [Timestamp("20130101"), np.nan, Timestamp("20180101")]),
("date", [date(2013, 1, 1), np.nan, date(2018, 1, 1)]),
("complex", [1 + 1j, np.nan, 2 + 2j]),
# The following dtype is commented out due to GH 23554
# ('timedelta64', [np.timedelta64(1, 'D'),
# np.nan, np.timedelta64(2, 'D')]),
("timedelta", [timedelta(1), np.nan, timedelta(2)]),
("time", [time(1), np.nan, time(2)]),
("period", [Period(2013), pd.NaT, Period(2018)]),
("interval", [Interval(0, 1), np.nan, Interval(0, 2)]),
]
ids, _ = zip(*_any_skipna_inferred_dtype) # use inferred type as fixture-id
@pytest.fixture(params=_any_skipna_inferred_dtype, ids=ids)
def any_skipna_inferred_dtype(request):
"""
Fixture for all inferred dtypes from _libs.lib.infer_dtype
The covered (inferred) types are:
* 'string'
* 'empty'
* 'bytes'
* 'mixed'
* 'mixed-integer'
* 'mixed-integer-float'
* 'floating'
* 'integer'
* 'decimal'
* 'boolean'
* 'datetime64'
* 'datetime'
* 'date'
* 'timedelta'
* 'time'
* 'period'
* 'interval'
Returns
-------
inferred_dtype : str
The string for the inferred dtype from _libs.lib.infer_dtype
values : np.ndarray
An array of object dtype that will be inferred to have
`inferred_dtype`
Examples
--------
>>> from pandas._libs import lib
>>>
>>> def test_something(any_skipna_inferred_dtype):
... inferred_dtype, values = any_skipna_inferred_dtype
... # will pass
... assert lib.infer_dtype(values, skipna=True) == inferred_dtype
"""
inferred_dtype, values = request.param
values = np.array(values, dtype=object) # object dtype to avoid casting
# correctness of inference tested in tests/dtypes/test_inference.py
return inferred_dtype, values
# ----------------------------------------------------------------
# Misc
# ----------------------------------------------------------------
@pytest.fixture
def ip():
"""
Get an instance of IPython.InteractiveShell.
Will raise a skip if IPython is not installed.
"""
pytest.importorskip("IPython", minversion="6.0.0")
from IPython.core.interactiveshell import InteractiveShell
# GH#35711 make sure sqlite history file handle is not leaked
from traitlets.config import Config # isort:skip
c = Config()
c.HistoryManager.hist_file = ":memory:"
return InteractiveShell(config=c)
@pytest.fixture(params=["bsr", "coo", "csc", "csr", "dia", "dok", "lil"])
def spmatrix(request):
"""
Yields scipy sparse matrix classes.
"""
sparse = pytest.importorskip("scipy.sparse")
return getattr(sparse, request.param + "_matrix")
@pytest.fixture(
params=[
getattr(pd.offsets, o)
for o in pd.offsets.__all__
if issubclass(getattr(pd.offsets, o), pd.offsets.Tick) and o != "Tick"
]
)
def tick_classes(request):
"""
Fixture for Tick based datetime offsets available for a time series.
"""
return request.param
@pytest.fixture(params=[None, lambda x: x])
def sort_by_key(request):
"""
Simple fixture for testing keys in sorting methods.
Tests None (no key) and the identity key.
"""
return request.param
@pytest.fixture(
params=[
("foo", None, None),
("Egon", "Venkman", None),
("NCC1701D", "NCC1701D", "NCC1701D"),
# possibly-matching NAs
(np.nan, np.nan, np.nan),
(np.nan, pd.NaT, None),
(np.nan, pd.NA, None),
(pd.NA, pd.NA, pd.NA),
]
)
def names(request) -> tuple[Hashable, Hashable, Hashable]:
"""
A 3-tuple of names, the first two for operands, the last for a result.
"""
return request.param
@pytest.fixture(params=[tm.setitem, tm.loc, tm.iloc])
def indexer_sli(request):
"""
Parametrize over __setitem__, loc.__setitem__, iloc.__setitem__
"""
return request.param
@pytest.fixture(params=[tm.loc, tm.iloc])
def indexer_li(request):
"""
Parametrize over loc.__getitem__, iloc.__getitem__
"""
return request.param
@pytest.fixture(params=[tm.setitem, tm.iloc])
def indexer_si(request):
"""
Parametrize over __setitem__, iloc.__setitem__
"""
return request.param
@pytest.fixture(params=[tm.setitem, tm.loc])
def indexer_sl(request):
"""
Parametrize over __setitem__, loc.__setitem__
"""
return request.param
@pytest.fixture(params=[tm.at, tm.loc])
def indexer_al(request):
"""
Parametrize over at.__setitem__, loc.__setitem__
"""
return request.param
@pytest.fixture(params=[tm.iat, tm.iloc])
def indexer_ial(request):
"""
Parametrize over iat.__setitem__, iloc.__setitem__
"""
return request.param
@pytest.fixture
def using_array_manager() -> bool:
"""
Fixture to check if the array manager is being used.
"""
return _get_option("mode.data_manager", silent=True) == "array"
@pytest.fixture
def using_copy_on_write() -> bool:
"""
Fixture to check if Copy-on-Write is enabled.
"""
return (
pd.options.mode.copy_on_write is True
and _get_option("mode.data_manager", silent=True) == "block"
)
@pytest.fixture
def warn_copy_on_write() -> bool:
"""
Fixture to check if Copy-on-Write is in warning mode.
"""
return (
pd.options.mode.copy_on_write == "warn"
and _get_option("mode.data_manager", silent=True) == "block"
)
@pytest.fixture
def using_infer_string() -> bool:
"""
Fixture to check if infer string option is enabled.
"""
return pd.options.future.infer_string is True
warsaws = ["Europe/Warsaw", "dateutil/Europe/Warsaw"]
if zoneinfo is not None:
warsaws.append(zoneinfo.ZoneInfo("Europe/Warsaw")) # type: ignore[arg-type]
@pytest.fixture(params=warsaws)
def warsaw(request) -> str:
"""
tzinfo for Europe/Warsaw using pytz, dateutil, or zoneinfo.
"""
return request.param
@pytest.fixture()
def arrow_string_storage():
return ("pyarrow", "pyarrow_numpy")
|