|
""" |
|
NumPy |
|
===== |
|
|
|
Provides |
|
1. An array object of arbitrary homogeneous items |
|
2. Fast mathematical operations over arrays |
|
3. Linear Algebra, Fourier Transforms, Random Number Generation |
|
|
|
How to use the documentation |
|
---------------------------- |
|
Documentation is available in two forms: docstrings provided |
|
with the code, and a loose standing reference guide, available from |
|
`the NumPy homepage <https://numpy.org>`_. |
|
|
|
We recommend exploring the docstrings using |
|
`IPython <https://ipython.org>`_, an advanced Python shell with |
|
TAB-completion and introspection capabilities. See below for further |
|
instructions. |
|
|
|
The docstring examples assume that `numpy` has been imported as ``np``:: |
|
|
|
>>> import numpy as np |
|
|
|
Code snippets are indicated by three greater-than signs:: |
|
|
|
>>> x = 42 |
|
>>> x = x + 1 |
|
|
|
Use the built-in ``help`` function to view a function's docstring:: |
|
|
|
>>> help(np.sort) |
|
... # doctest: +SKIP |
|
|
|
For some objects, ``np.info(obj)`` may provide additional help. This is |
|
particularly true if you see the line "Help on ufunc object:" at the top |
|
of the help() page. Ufuncs are implemented in C, not Python, for speed. |
|
The native Python help() does not know how to view their help, but our |
|
np.info() function does. |
|
|
|
Available subpackages |
|
--------------------- |
|
lib |
|
Basic functions used by several sub-packages. |
|
random |
|
Core Random Tools |
|
linalg |
|
Core Linear Algebra Tools |
|
fft |
|
Core FFT routines |
|
polynomial |
|
Polynomial tools |
|
testing |
|
NumPy testing tools |
|
distutils |
|
Enhancements to distutils with support for |
|
Fortran compilers support and more (for Python <= 3.11) |
|
|
|
Utilities |
|
--------- |
|
test |
|
Run numpy unittests |
|
show_config |
|
Show numpy build configuration |
|
__version__ |
|
NumPy version string |
|
|
|
Viewing documentation using IPython |
|
----------------------------------- |
|
|
|
Start IPython and import `numpy` usually under the alias ``np``: `import |
|
numpy as np`. Then, directly past or use the ``%cpaste`` magic to paste |
|
examples into the shell. To see which functions are available in `numpy`, |
|
type ``np.<TAB>`` (where ``<TAB>`` refers to the TAB key), or use |
|
``np.*cos*?<ENTER>`` (where ``<ENTER>`` refers to the ENTER key) to narrow |
|
down the list. To view the docstring for a function, use |
|
``np.cos?<ENTER>`` (to view the docstring) and ``np.cos??<ENTER>`` (to view |
|
the source code). |
|
|
|
Copies vs. in-place operation |
|
----------------------------- |
|
Most of the functions in `numpy` return a copy of the array argument |
|
(e.g., `np.sort`). In-place versions of these functions are often |
|
available as array methods, i.e. ``x = np.array([1,2,3]); x.sort()``. |
|
Exceptions to this rule are documented. |
|
|
|
""" |
|
import os |
|
import sys |
|
import warnings |
|
|
|
from ._globals import _NoValue, _CopyMode |
|
from ._expired_attrs_2_0 import __expired_attributes__ |
|
|
|
|
|
|
|
from . import version |
|
from .version import __version__ |
|
|
|
|
|
|
|
try: |
|
__NUMPY_SETUP__ |
|
except NameError: |
|
__NUMPY_SETUP__ = False |
|
|
|
if __NUMPY_SETUP__: |
|
sys.stderr.write('Running from numpy source directory.\n') |
|
else: |
|
|
|
from . import _distributor_init |
|
|
|
try: |
|
from numpy.__config__ import show as show_config |
|
except ImportError as e: |
|
msg = """Error importing numpy: you should not try to import numpy from |
|
its source directory; please exit the numpy source tree, and relaunch |
|
your python interpreter from there.""" |
|
raise ImportError(msg) from e |
|
|
|
from . import _core |
|
from ._core import ( |
|
False_, ScalarType, True_, _get_promotion_state, _no_nep50_warning, |
|
_set_promotion_state, abs, absolute, acos, acosh, add, all, allclose, |
|
amax, amin, any, arange, arccos, arccosh, arcsin, arcsinh, |
|
arctan, arctan2, arctanh, argmax, argmin, argpartition, argsort, |
|
argwhere, around, array, array2string, array_equal, array_equiv, |
|
array_repr, array_str, asanyarray, asarray, ascontiguousarray, |
|
asfortranarray, asin, asinh, atan, atanh, atan2, astype, atleast_1d, |
|
atleast_2d, atleast_3d, base_repr, binary_repr, bitwise_and, |
|
bitwise_count, bitwise_invert, bitwise_left_shift, bitwise_not, |
|
bitwise_or, bitwise_right_shift, bitwise_xor, block, bool, bool_, |
|
broadcast, busday_count, busday_offset, busdaycalendar, byte, bytes_, |
|
can_cast, cbrt, cdouble, ceil, character, choose, clip, clongdouble, |
|
complex128, complex64, complexfloating, compress, concat, concatenate, |
|
conj, conjugate, convolve, copysign, copyto, correlate, cos, cosh, |
|
count_nonzero, cross, csingle, cumprod, cumsum, cumulative_prod, |
|
cumulative_sum, datetime64, datetime_as_string, datetime_data, |
|
deg2rad, degrees, diagonal, divide, divmod, dot, double, dtype, e, |
|
einsum, einsum_path, empty, empty_like, equal, errstate, euler_gamma, |
|
exp, exp2, expm1, fabs, finfo, flatiter, flatnonzero, flexible, |
|
float16, float32, float64, float_power, floating, floor, floor_divide, |
|
fmax, fmin, fmod, format_float_positional, format_float_scientific, |
|
frexp, from_dlpack, frombuffer, fromfile, fromfunction, fromiter, |
|
frompyfunc, fromstring, full, full_like, gcd, generic, geomspace, |
|
get_printoptions, getbufsize, geterr, geterrcall, greater, |
|
greater_equal, half, heaviside, hstack, hypot, identity, iinfo, iinfo, |
|
indices, inexact, inf, inner, int16, int32, int64, int8, int_, intc, |
|
integer, intp, invert, is_busday, isclose, isdtype, isfinite, |
|
isfortran, isinf, isnan, isnat, isscalar, issubdtype, lcm, ldexp, |
|
left_shift, less, less_equal, lexsort, linspace, little_endian, log, |
|
log10, log1p, log2, logaddexp, logaddexp2, logical_and, logical_not, |
|
logical_or, logical_xor, logspace, long, longdouble, longlong, matmul, |
|
matrix_transpose, max, maximum, may_share_memory, mean, memmap, min, |
|
min_scalar_type, minimum, mod, modf, moveaxis, multiply, nan, ndarray, |
|
ndim, nditer, negative, nested_iters, newaxis, nextafter, nonzero, |
|
not_equal, number, object_, ones, ones_like, outer, partition, |
|
permute_dims, pi, positive, pow, power, printoptions, prod, |
|
promote_types, ptp, put, putmask, rad2deg, radians, ravel, recarray, |
|
reciprocal, record, remainder, repeat, require, reshape, resize, |
|
result_type, right_shift, rint, roll, rollaxis, round, sctypeDict, |
|
searchsorted, set_printoptions, setbufsize, seterr, seterrcall, shape, |
|
shares_memory, short, sign, signbit, signedinteger, sin, single, sinh, |
|
size, sort, spacing, sqrt, square, squeeze, stack, std, |
|
str_, subtract, sum, swapaxes, take, tan, tanh, tensordot, |
|
timedelta64, trace, transpose, true_divide, trunc, typecodes, ubyte, |
|
ufunc, uint, uint16, uint32, uint64, uint8, uintc, uintp, ulong, |
|
ulonglong, unsignedinteger, unstack, ushort, var, vdot, vecdot, void, |
|
vstack, where, zeros, zeros_like |
|
) |
|
|
|
|
|
|
|
for ta in ["float96", "float128", "complex192", "complex256"]: |
|
try: |
|
globals()[ta] = getattr(_core, ta) |
|
except AttributeError: |
|
pass |
|
del ta |
|
|
|
from . import lib |
|
from .lib import scimath as emath |
|
from .lib._histograms_impl import ( |
|
histogram, histogram_bin_edges, histogramdd |
|
) |
|
from .lib._nanfunctions_impl import ( |
|
nanargmax, nanargmin, nancumprod, nancumsum, nanmax, nanmean, |
|
nanmedian, nanmin, nanpercentile, nanprod, nanquantile, nanstd, |
|
nansum, nanvar |
|
) |
|
from .lib._function_base_impl import ( |
|
select, piecewise, trim_zeros, copy, iterable, percentile, diff, |
|
gradient, angle, unwrap, sort_complex, flip, rot90, extract, place, |
|
vectorize, asarray_chkfinite, average, bincount, digitize, cov, |
|
corrcoef, median, sinc, hamming, hanning, bartlett, blackman, |
|
kaiser, trapezoid, trapz, i0, meshgrid, delete, insert, append, |
|
interp, quantile |
|
) |
|
from .lib._twodim_base_impl import ( |
|
diag, diagflat, eye, fliplr, flipud, tri, triu, tril, vander, |
|
histogram2d, mask_indices, tril_indices, tril_indices_from, |
|
triu_indices, triu_indices_from |
|
) |
|
from .lib._shape_base_impl import ( |
|
apply_over_axes, apply_along_axis, array_split, column_stack, dsplit, |
|
dstack, expand_dims, hsplit, kron, put_along_axis, row_stack, split, |
|
take_along_axis, tile, vsplit |
|
) |
|
from .lib._type_check_impl import ( |
|
iscomplexobj, isrealobj, imag, iscomplex, isreal, nan_to_num, real, |
|
real_if_close, typename, mintypecode, common_type |
|
) |
|
from .lib._arraysetops_impl import ( |
|
ediff1d, in1d, intersect1d, isin, setdiff1d, setxor1d, union1d, |
|
unique, unique_all, unique_counts, unique_inverse, unique_values |
|
) |
|
from .lib._ufunclike_impl import fix, isneginf, isposinf |
|
from .lib._arraypad_impl import pad |
|
from .lib._utils_impl import ( |
|
show_runtime, get_include, info |
|
) |
|
from .lib._stride_tricks_impl import ( |
|
broadcast_arrays, broadcast_shapes, broadcast_to |
|
) |
|
from .lib._polynomial_impl import ( |
|
poly, polyint, polyder, polyadd, polysub, polymul, polydiv, polyval, |
|
polyfit, poly1d, roots |
|
) |
|
from .lib._npyio_impl import ( |
|
savetxt, loadtxt, genfromtxt, load, save, savez, packbits, |
|
savez_compressed, unpackbits, fromregex |
|
) |
|
from .lib._index_tricks_impl import ( |
|
diag_indices_from, diag_indices, fill_diagonal, ndindex, ndenumerate, |
|
ix_, c_, r_, s_, ogrid, mgrid, unravel_index, ravel_multi_index, |
|
index_exp |
|
) |
|
|
|
from . import matrixlib as _mat |
|
from .matrixlib import ( |
|
asmatrix, bmat, matrix |
|
) |
|
|
|
|
|
|
|
|
|
|
|
__numpy_submodules__ = { |
|
"linalg", "fft", "dtypes", "random", "polynomial", "ma", |
|
"exceptions", "lib", "ctypeslib", "testing", "typing", |
|
"f2py", "test", "rec", "char", "core", "strings", |
|
} |
|
|
|
|
|
_msg = ( |
|
"module 'numpy' has no attribute '{n}'.\n" |
|
"`np.{n}` was a deprecated alias for the builtin `{n}`. " |
|
"To avoid this error in existing code, use `{n}` by itself. " |
|
"Doing this will not modify any behavior and is safe. {extended_msg}\n" |
|
"The aliases was originally deprecated in NumPy 1.20; for more " |
|
"details and guidance see the original release note at:\n" |
|
" https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations") |
|
|
|
_specific_msg = ( |
|
"If you specifically wanted the numpy scalar type, use `np.{}` here.") |
|
|
|
_int_extended_msg = ( |
|
"When replacing `np.{}`, you may wish to use e.g. `np.int64` " |
|
"or `np.int32` to specify the precision. If you wish to review " |
|
"your current use, check the release note link for " |
|
"additional information.") |
|
|
|
_type_info = [ |
|
("object", ""), |
|
("float", _specific_msg.format("float64")), |
|
("complex", _specific_msg.format("complex128")), |
|
("str", _specific_msg.format("str_")), |
|
("int", _int_extended_msg.format("int"))] |
|
|
|
__former_attrs__ = { |
|
n: _msg.format(n=n, extended_msg=extended_msg) |
|
for n, extended_msg in _type_info |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
__future_scalars__ = {"str", "bytes", "object"} |
|
|
|
__array_api_version__ = "2023.12" |
|
|
|
from ._array_api_info import __array_namespace_info__ |
|
|
|
|
|
_core.getlimits._register_known_types() |
|
|
|
__all__ = list( |
|
__numpy_submodules__ | |
|
set(_core.__all__) | |
|
set(_mat.__all__) | |
|
set(lib._histograms_impl.__all__) | |
|
set(lib._nanfunctions_impl.__all__) | |
|
set(lib._function_base_impl.__all__) | |
|
set(lib._twodim_base_impl.__all__) | |
|
set(lib._shape_base_impl.__all__) | |
|
set(lib._type_check_impl.__all__) | |
|
set(lib._arraysetops_impl.__all__) | |
|
set(lib._ufunclike_impl.__all__) | |
|
set(lib._arraypad_impl.__all__) | |
|
set(lib._utils_impl.__all__) | |
|
set(lib._stride_tricks_impl.__all__) | |
|
set(lib._polynomial_impl.__all__) | |
|
set(lib._npyio_impl.__all__) | |
|
set(lib._index_tricks_impl.__all__) | |
|
{"emath", "show_config", "__version__", "__array_namespace_info__"} |
|
) |
|
|
|
|
|
warnings.filterwarnings("ignore", message="numpy.dtype size changed") |
|
warnings.filterwarnings("ignore", message="numpy.ufunc size changed") |
|
warnings.filterwarnings("ignore", message="numpy.ndarray size changed") |
|
|
|
def __getattr__(attr): |
|
|
|
import warnings |
|
|
|
if attr == "linalg": |
|
import numpy.linalg as linalg |
|
return linalg |
|
elif attr == "fft": |
|
import numpy.fft as fft |
|
return fft |
|
elif attr == "dtypes": |
|
import numpy.dtypes as dtypes |
|
return dtypes |
|
elif attr == "random": |
|
import numpy.random as random |
|
return random |
|
elif attr == "polynomial": |
|
import numpy.polynomial as polynomial |
|
return polynomial |
|
elif attr == "ma": |
|
import numpy.ma as ma |
|
return ma |
|
elif attr == "ctypeslib": |
|
import numpy.ctypeslib as ctypeslib |
|
return ctypeslib |
|
elif attr == "exceptions": |
|
import numpy.exceptions as exceptions |
|
return exceptions |
|
elif attr == "testing": |
|
import numpy.testing as testing |
|
return testing |
|
elif attr == "matlib": |
|
import numpy.matlib as matlib |
|
return matlib |
|
elif attr == "f2py": |
|
import numpy.f2py as f2py |
|
return f2py |
|
elif attr == "typing": |
|
import numpy.typing as typing |
|
return typing |
|
elif attr == "rec": |
|
import numpy.rec as rec |
|
return rec |
|
elif attr == "char": |
|
import numpy.char as char |
|
return char |
|
elif attr == "array_api": |
|
raise AttributeError("`numpy.array_api` is not available from " |
|
"numpy 2.0 onwards", name=None) |
|
elif attr == "core": |
|
import numpy.core as core |
|
return core |
|
elif attr == "strings": |
|
import numpy.strings as strings |
|
return strings |
|
elif attr == "distutils": |
|
if 'distutils' in __numpy_submodules__: |
|
import numpy.distutils as distutils |
|
return distutils |
|
else: |
|
raise AttributeError("`numpy.distutils` is not available from " |
|
"Python 3.12 onwards", name=None) |
|
|
|
if attr in __future_scalars__: |
|
|
|
|
|
warnings.warn( |
|
f"In the future `np.{attr}` will be defined as the " |
|
"corresponding NumPy scalar.", FutureWarning, stacklevel=2) |
|
|
|
if attr in __former_attrs__: |
|
raise AttributeError(__former_attrs__[attr], name=None) |
|
|
|
if attr in __expired_attributes__: |
|
raise AttributeError( |
|
f"`np.{attr}` was removed in the NumPy 2.0 release. " |
|
f"{__expired_attributes__[attr]}", |
|
name=None |
|
) |
|
|
|
if attr == "chararray": |
|
warnings.warn( |
|
"`np.chararray` is deprecated and will be removed from " |
|
"the main namespace in the future. Use an array with a string " |
|
"or bytes dtype instead.", DeprecationWarning, stacklevel=2) |
|
import numpy.char as char |
|
return char.chararray |
|
|
|
raise AttributeError("module {!r} has no attribute " |
|
"{!r}".format(__name__, attr)) |
|
|
|
def __dir__(): |
|
public_symbols = ( |
|
globals().keys() | __numpy_submodules__ |
|
) |
|
public_symbols -= { |
|
"matrixlib", "matlib", "tests", "conftest", "version", |
|
"compat", "distutils", "array_api" |
|
} |
|
return list(public_symbols) |
|
|
|
|
|
from numpy._pytesttester import PytestTester |
|
test = PytestTester(__name__) |
|
del PytestTester |
|
|
|
def _sanity_check(): |
|
""" |
|
Quick sanity checks for common bugs caused by environment. |
|
There are some cases e.g. with wrong BLAS ABI that cause wrong |
|
results under specific runtime conditions that are not necessarily |
|
achieved during test suite runs, and it is useful to catch those early. |
|
|
|
See https://github.com/numpy/numpy/issues/8577 and other |
|
similar bug reports. |
|
|
|
""" |
|
try: |
|
x = ones(2, dtype=float32) |
|
if not abs(x.dot(x) - float32(2.0)) < 1e-5: |
|
raise AssertionError() |
|
except AssertionError: |
|
msg = ("The current Numpy installation ({!r}) fails to " |
|
"pass simple sanity checks. This can be caused for example " |
|
"by incorrect BLAS library being linked in, or by mixing " |
|
"package managers (pip, conda, apt, ...). Search closed " |
|
"numpy issues for similar problems.") |
|
raise RuntimeError(msg.format(__file__)) from None |
|
|
|
_sanity_check() |
|
del _sanity_check |
|
|
|
def _mac_os_check(): |
|
""" |
|
Quick Sanity check for Mac OS look for accelerate build bugs. |
|
Testing numpy polyfit calls init_dgelsd(LAPACK) |
|
""" |
|
try: |
|
c = array([3., 2., 1.]) |
|
x = linspace(0, 2, 5) |
|
y = polyval(c, x) |
|
_ = polyfit(x, y, 2, cov=True) |
|
except ValueError: |
|
pass |
|
|
|
if sys.platform == "darwin": |
|
from . import exceptions |
|
with warnings.catch_warnings(record=True) as w: |
|
_mac_os_check() |
|
|
|
if len(w) > 0: |
|
for _wn in w: |
|
if _wn.category is exceptions.RankWarning: |
|
|
|
error_message = f"{_wn.category.__name__}: {str(_wn.message)}" |
|
msg = ( |
|
"Polyfit sanity test emitted a warning, most likely due " |
|
"to using a buggy Accelerate backend." |
|
"\nIf you compiled yourself, more information is available at:" |
|
"\nhttps://numpy.org/devdocs/building/index.html" |
|
"\nOtherwise report this to the vendor " |
|
"that provided NumPy.\n\n{}\n".format(error_message)) |
|
raise RuntimeError(msg) |
|
del _wn |
|
del w |
|
del _mac_os_check |
|
|
|
def hugepage_setup(): |
|
""" |
|
We usually use madvise hugepages support, but on some old kernels it |
|
is slow and thus better avoided. Specifically kernel version 4.6 |
|
had a bug fix which probably fixed this: |
|
https://github.com/torvalds/linux/commit/7cf91a98e607c2f935dbcc177d70011e95b8faff |
|
""" |
|
use_hugepage = os.environ.get("NUMPY_MADVISE_HUGEPAGE", None) |
|
if sys.platform == "linux" and use_hugepage is None: |
|
|
|
|
|
|
|
|
|
|
|
try: |
|
use_hugepage = 1 |
|
kernel_version = os.uname().release.split(".")[:2] |
|
kernel_version = tuple(int(v) for v in kernel_version) |
|
if kernel_version < (4, 6): |
|
use_hugepage = 0 |
|
except ValueError: |
|
use_hugepage = 0 |
|
elif use_hugepage is None: |
|
|
|
use_hugepage = 1 |
|
else: |
|
use_hugepage = int(use_hugepage) |
|
return use_hugepage |
|
|
|
|
|
_core.multiarray._set_madvise_hugepage(hugepage_setup()) |
|
del hugepage_setup |
|
|
|
|
|
|
|
|
|
_core.multiarray._multiarray_umath._reload_guard() |
|
|
|
|
|
_core._set_promotion_state( |
|
os.environ.get("NPY_PROMOTION_STATE", "weak")) |
|
|
|
|
|
def _pyinstaller_hooks_dir(): |
|
from pathlib import Path |
|
return [str(Path(__file__).with_name("_pyinstaller").resolve())] |
|
|
|
|
|
|
|
del os, sys, warnings |
|
|