Bhuvaneshvar's picture
Upload 2116 files
6370773 verified
raw
history blame
10.4 kB
"""
Array API Inspection namespace
This is the namespace for inspection functions as defined by the array API
standard. See
https://data-apis.org/array-api/latest/API_specification/inspection.html for
more details.
"""
from numpy._core import (
dtype,
bool,
intp,
int8,
int16,
int32,
int64,
uint8,
uint16,
uint32,
uint64,
float32,
float64,
complex64,
complex128,
)
class __array_namespace_info__:
"""
Get the array API inspection namespace for NumPy.
The array API inspection namespace defines the following functions:
- capabilities()
- default_device()
- default_dtypes()
- dtypes()
- devices()
See
https://data-apis.org/array-api/latest/API_specification/inspection.html
for more details.
Returns
-------
info : ModuleType
The array API inspection namespace for NumPy.
Examples
--------
>>> info = np.__array_namespace_info__()
>>> info.default_dtypes()
{'real floating': numpy.float64,
'complex floating': numpy.complex128,
'integral': numpy.int64,
'indexing': numpy.int64}
"""
__module__ = 'numpy'
def capabilities(self):
"""
Return a dictionary of array API library capabilities.
The resulting dictionary has the following keys:
- **"boolean indexing"**: boolean indicating whether an array library
supports boolean indexing. Always ``True`` for NumPy.
- **"data-dependent shapes"**: boolean indicating whether an array
library supports data-dependent output shapes. Always ``True`` for
NumPy.
See
https://data-apis.org/array-api/latest/API_specification/generated/array_api.info.capabilities.html
for more details.
See Also
--------
__array_namespace_info__.default_device,
__array_namespace_info__.default_dtypes,
__array_namespace_info__.dtypes,
__array_namespace_info__.devices
Returns
-------
capabilities : dict
A dictionary of array API library capabilities.
Examples
--------
>>> info = np.__array_namespace_info__()
>>> info.capabilities()
{'boolean indexing': True,
'data-dependent shapes': True}
"""
return {
"boolean indexing": True,
"data-dependent shapes": True,
# 'max rank' will be part of the 2024.12 standard
# "max rank": 64,
}
def default_device(self):
"""
The default device used for new NumPy arrays.
For NumPy, this always returns ``'cpu'``.
See Also
--------
__array_namespace_info__.capabilities,
__array_namespace_info__.default_dtypes,
__array_namespace_info__.dtypes,
__array_namespace_info__.devices
Returns
-------
device : str
The default device used for new NumPy arrays.
Examples
--------
>>> info = np.__array_namespace_info__()
>>> info.default_device()
'cpu'
"""
return "cpu"
def default_dtypes(self, *, device=None):
"""
The default data types used for new NumPy arrays.
For NumPy, this always returns the following dictionary:
- **"real floating"**: ``numpy.float64``
- **"complex floating"**: ``numpy.complex128``
- **"integral"**: ``numpy.intp``
- **"indexing"**: ``numpy.intp``
Parameters
----------
device : str, optional
The device to get the default data types for. For NumPy, only
``'cpu'`` is allowed.
Returns
-------
dtypes : dict
A dictionary describing the default data types used for new NumPy
arrays.
See Also
--------
__array_namespace_info__.capabilities,
__array_namespace_info__.default_device,
__array_namespace_info__.dtypes,
__array_namespace_info__.devices
Examples
--------
>>> info = np.__array_namespace_info__()
>>> info.default_dtypes()
{'real floating': numpy.float64,
'complex floating': numpy.complex128,
'integral': numpy.int64,
'indexing': numpy.int64}
"""
if device not in ["cpu", None]:
raise ValueError(
'Device not understood. Only "cpu" is allowed, but received:'
f' {device}'
)
return {
"real floating": dtype(float64),
"complex floating": dtype(complex128),
"integral": dtype(intp),
"indexing": dtype(intp),
}
def dtypes(self, *, device=None, kind=None):
"""
The array API data types supported by NumPy.
Note that this function only returns data types that are defined by
the array API.
Parameters
----------
device : str, optional
The device to get the data types for. For NumPy, only ``'cpu'`` is
allowed.
kind : str or tuple of str, optional
The kind of data types to return. If ``None``, all data types are
returned. If a string, only data types of that kind are returned.
If a tuple, a dictionary containing the union of the given kinds
is returned. The following kinds are supported:
- ``'bool'``: boolean data types (i.e., ``bool``).
- ``'signed integer'``: signed integer data types (i.e., ``int8``,
``int16``, ``int32``, ``int64``).
- ``'unsigned integer'``: unsigned integer data types (i.e.,
``uint8``, ``uint16``, ``uint32``, ``uint64``).
- ``'integral'``: integer data types. Shorthand for ``('signed
integer', 'unsigned integer')``.
- ``'real floating'``: real-valued floating-point data types
(i.e., ``float32``, ``float64``).
- ``'complex floating'``: complex floating-point data types (i.e.,
``complex64``, ``complex128``).
- ``'numeric'``: numeric data types. Shorthand for ``('integral',
'real floating', 'complex floating')``.
Returns
-------
dtypes : dict
A dictionary mapping the names of data types to the corresponding
NumPy data types.
See Also
--------
__array_namespace_info__.capabilities,
__array_namespace_info__.default_device,
__array_namespace_info__.default_dtypes,
__array_namespace_info__.devices
Examples
--------
>>> info = np.__array_namespace_info__()
>>> info.dtypes(kind='signed integer')
{'int8': numpy.int8,
'int16': numpy.int16,
'int32': numpy.int32,
'int64': numpy.int64}
"""
if device not in ["cpu", None]:
raise ValueError(
'Device not understood. Only "cpu" is allowed, but received:'
f' {device}'
)
if kind is None:
return {
"bool": dtype(bool),
"int8": dtype(int8),
"int16": dtype(int16),
"int32": dtype(int32),
"int64": dtype(int64),
"uint8": dtype(uint8),
"uint16": dtype(uint16),
"uint32": dtype(uint32),
"uint64": dtype(uint64),
"float32": dtype(float32),
"float64": dtype(float64),
"complex64": dtype(complex64),
"complex128": dtype(complex128),
}
if kind == "bool":
return {"bool": bool}
if kind == "signed integer":
return {
"int8": dtype(int8),
"int16": dtype(int16),
"int32": dtype(int32),
"int64": dtype(int64),
}
if kind == "unsigned integer":
return {
"uint8": dtype(uint8),
"uint16": dtype(uint16),
"uint32": dtype(uint32),
"uint64": dtype(uint64),
}
if kind == "integral":
return {
"int8": dtype(int8),
"int16": dtype(int16),
"int32": dtype(int32),
"int64": dtype(int64),
"uint8": dtype(uint8),
"uint16": dtype(uint16),
"uint32": dtype(uint32),
"uint64": dtype(uint64),
}
if kind == "real floating":
return {
"float32": dtype(float32),
"float64": dtype(float64),
}
if kind == "complex floating":
return {
"complex64": dtype(complex64),
"complex128": dtype(complex128),
}
if kind == "numeric":
return {
"int8": dtype(int8),
"int16": dtype(int16),
"int32": dtype(int32),
"int64": dtype(int64),
"uint8": dtype(uint8),
"uint16": dtype(uint16),
"uint32": dtype(uint32),
"uint64": dtype(uint64),
"float32": dtype(float32),
"float64": dtype(float64),
"complex64": dtype(complex64),
"complex128": dtype(complex128),
}
if isinstance(kind, tuple):
res = {}
for k in kind:
res.update(self.dtypes(kind=k))
return res
raise ValueError(f"unsupported kind: {kind!r}")
def devices(self):
"""
The devices supported by NumPy.
For NumPy, this always returns ``['cpu']``.
Returns
-------
devices : list of str
The devices supported by NumPy.
See Also
--------
__array_namespace_info__.capabilities,
__array_namespace_info__.default_device,
__array_namespace_info__.default_dtypes,
__array_namespace_info__.dtypes
Examples
--------
>>> info = np.__array_namespace_info__()
>>> info.devices()
['cpu']
"""
return ["cpu"]