|
""" |
|
Discrete Fourier Transforms - _helper.py |
|
|
|
""" |
|
from numpy._core import integer, empty, arange, asarray, roll |
|
from numpy._core.overrides import array_function_dispatch, set_module |
|
|
|
|
|
|
|
__all__ = ['fftshift', 'ifftshift', 'fftfreq', 'rfftfreq'] |
|
|
|
integer_types = (int, integer) |
|
|
|
|
|
def _fftshift_dispatcher(x, axes=None): |
|
return (x,) |
|
|
|
|
|
@array_function_dispatch(_fftshift_dispatcher, module='numpy.fft') |
|
def fftshift(x, axes=None): |
|
""" |
|
Shift the zero-frequency component to the center of the spectrum. |
|
|
|
This function swaps half-spaces for all axes listed (defaults to all). |
|
Note that ``y[0]`` is the Nyquist component only if ``len(x)`` is even. |
|
|
|
Parameters |
|
---------- |
|
x : array_like |
|
Input array. |
|
axes : int or shape tuple, optional |
|
Axes over which to shift. Default is None, which shifts all axes. |
|
|
|
Returns |
|
------- |
|
y : ndarray |
|
The shifted array. |
|
|
|
See Also |
|
-------- |
|
ifftshift : The inverse of `fftshift`. |
|
|
|
Examples |
|
-------- |
|
>>> import numpy as np |
|
>>> freqs = np.fft.fftfreq(10, 0.1) |
|
>>> freqs |
|
array([ 0., 1., 2., ..., -3., -2., -1.]) |
|
>>> np.fft.fftshift(freqs) |
|
array([-5., -4., -3., -2., -1., 0., 1., 2., 3., 4.]) |
|
|
|
Shift the zero-frequency component only along the second axis: |
|
|
|
>>> freqs = np.fft.fftfreq(9, d=1./9).reshape(3, 3) |
|
>>> freqs |
|
array([[ 0., 1., 2.], |
|
[ 3., 4., -4.], |
|
[-3., -2., -1.]]) |
|
>>> np.fft.fftshift(freqs, axes=(1,)) |
|
array([[ 2., 0., 1.], |
|
[-4., 3., 4.], |
|
[-1., -3., -2.]]) |
|
|
|
""" |
|
x = asarray(x) |
|
if axes is None: |
|
axes = tuple(range(x.ndim)) |
|
shift = [dim // 2 for dim in x.shape] |
|
elif isinstance(axes, integer_types): |
|
shift = x.shape[axes] // 2 |
|
else: |
|
shift = [x.shape[ax] // 2 for ax in axes] |
|
|
|
return roll(x, shift, axes) |
|
|
|
|
|
@array_function_dispatch(_fftshift_dispatcher, module='numpy.fft') |
|
def ifftshift(x, axes=None): |
|
""" |
|
The inverse of `fftshift`. Although identical for even-length `x`, the |
|
functions differ by one sample for odd-length `x`. |
|
|
|
Parameters |
|
---------- |
|
x : array_like |
|
Input array. |
|
axes : int or shape tuple, optional |
|
Axes over which to calculate. Defaults to None, which shifts all axes. |
|
|
|
Returns |
|
------- |
|
y : ndarray |
|
The shifted array. |
|
|
|
See Also |
|
-------- |
|
fftshift : Shift zero-frequency component to the center of the spectrum. |
|
|
|
Examples |
|
-------- |
|
>>> import numpy as np |
|
>>> freqs = np.fft.fftfreq(9, d=1./9).reshape(3, 3) |
|
>>> freqs |
|
array([[ 0., 1., 2.], |
|
[ 3., 4., -4.], |
|
[-3., -2., -1.]]) |
|
>>> np.fft.ifftshift(np.fft.fftshift(freqs)) |
|
array([[ 0., 1., 2.], |
|
[ 3., 4., -4.], |
|
[-3., -2., -1.]]) |
|
|
|
""" |
|
x = asarray(x) |
|
if axes is None: |
|
axes = tuple(range(x.ndim)) |
|
shift = [-(dim // 2) for dim in x.shape] |
|
elif isinstance(axes, integer_types): |
|
shift = -(x.shape[axes] // 2) |
|
else: |
|
shift = [-(x.shape[ax] // 2) for ax in axes] |
|
|
|
return roll(x, shift, axes) |
|
|
|
|
|
@set_module('numpy.fft') |
|
def fftfreq(n, d=1.0, device=None): |
|
""" |
|
Return the Discrete Fourier Transform sample frequencies. |
|
|
|
The returned float array `f` contains the frequency bin centers in cycles |
|
per unit of the sample spacing (with zero at the start). For instance, if |
|
the sample spacing is in seconds, then the frequency unit is cycles/second. |
|
|
|
Given a window length `n` and a sample spacing `d`:: |
|
|
|
f = [0, 1, ..., n/2-1, -n/2, ..., -1] / (d*n) if n is even |
|
f = [0, 1, ..., (n-1)/2, -(n-1)/2, ..., -1] / (d*n) if n is odd |
|
|
|
Parameters |
|
---------- |
|
n : int |
|
Window length. |
|
d : scalar, optional |
|
Sample spacing (inverse of the sampling rate). Defaults to 1. |
|
device : str, optional |
|
The device on which to place the created array. Default: ``None``. |
|
For Array-API interoperability only, so must be ``"cpu"`` if passed. |
|
|
|
.. versionadded:: 2.0.0 |
|
|
|
Returns |
|
------- |
|
f : ndarray |
|
Array of length `n` containing the sample frequencies. |
|
|
|
Examples |
|
-------- |
|
>>> import numpy as np |
|
>>> signal = np.array([-2, 8, 6, 4, 1, 0, 3, 5], dtype=float) |
|
>>> fourier = np.fft.fft(signal) |
|
>>> n = signal.size |
|
>>> timestep = 0.1 |
|
>>> freq = np.fft.fftfreq(n, d=timestep) |
|
>>> freq |
|
array([ 0. , 1.25, 2.5 , ..., -3.75, -2.5 , -1.25]) |
|
|
|
""" |
|
if not isinstance(n, integer_types): |
|
raise ValueError("n should be an integer") |
|
val = 1.0 / (n * d) |
|
results = empty(n, int, device=device) |
|
N = (n-1)//2 + 1 |
|
p1 = arange(0, N, dtype=int, device=device) |
|
results[:N] = p1 |
|
p2 = arange(-(n//2), 0, dtype=int, device=device) |
|
results[N:] = p2 |
|
return results * val |
|
|
|
|
|
@set_module('numpy.fft') |
|
def rfftfreq(n, d=1.0, device=None): |
|
""" |
|
Return the Discrete Fourier Transform sample frequencies |
|
(for usage with rfft, irfft). |
|
|
|
The returned float array `f` contains the frequency bin centers in cycles |
|
per unit of the sample spacing (with zero at the start). For instance, if |
|
the sample spacing is in seconds, then the frequency unit is cycles/second. |
|
|
|
Given a window length `n` and a sample spacing `d`:: |
|
|
|
f = [0, 1, ..., n/2-1, n/2] / (d*n) if n is even |
|
f = [0, 1, ..., (n-1)/2-1, (n-1)/2] / (d*n) if n is odd |
|
|
|
Unlike `fftfreq` (but like `scipy.fftpack.rfftfreq`) |
|
the Nyquist frequency component is considered to be positive. |
|
|
|
Parameters |
|
---------- |
|
n : int |
|
Window length. |
|
d : scalar, optional |
|
Sample spacing (inverse of the sampling rate). Defaults to 1. |
|
device : str, optional |
|
The device on which to place the created array. Default: ``None``. |
|
For Array-API interoperability only, so must be ``"cpu"`` if passed. |
|
|
|
.. versionadded:: 2.0.0 |
|
|
|
Returns |
|
------- |
|
f : ndarray |
|
Array of length ``n//2 + 1`` containing the sample frequencies. |
|
|
|
Examples |
|
-------- |
|
>>> import numpy as np |
|
>>> signal = np.array([-2, 8, 6, 4, 1, 0, 3, 5, -3, 4], dtype=float) |
|
>>> fourier = np.fft.rfft(signal) |
|
>>> n = signal.size |
|
>>> sample_rate = 100 |
|
>>> freq = np.fft.fftfreq(n, d=1./sample_rate) |
|
>>> freq |
|
array([ 0., 10., 20., ..., -30., -20., -10.]) |
|
>>> freq = np.fft.rfftfreq(n, d=1./sample_rate) |
|
>>> freq |
|
array([ 0., 10., 20., 30., 40., 50.]) |
|
|
|
""" |
|
if not isinstance(n, integer_types): |
|
raise ValueError("n should be an integer") |
|
val = 1.0/(n*d) |
|
N = n//2 + 1 |
|
results = arange(0, N, dtype=int, device=device) |
|
return results * val |
|
|