cmrit
/
cmrithackathon-master
/.venv
/lib
/python3.11
/site-packages
/numpy
/ma
/tests
/test_subclassing.py
# pylint: disable-msg=W0611, W0612, W0511,R0201 | |
"""Tests suite for MaskedArray & subclassing. | |
:author: Pierre Gerard-Marchant | |
:contact: pierregm_at_uga_dot_edu | |
:version: $Id: test_subclassing.py 3473 2007-10-29 15:18:13Z jarrod.millman $ | |
""" | |
import numpy as np | |
from numpy.lib.mixins import NDArrayOperatorsMixin | |
from numpy.testing import assert_, assert_raises | |
from numpy.ma.testutils import assert_equal | |
from numpy.ma.core import ( | |
array, arange, masked, MaskedArray, masked_array, log, add, hypot, | |
divide, asarray, asanyarray, nomask | |
) | |
# from numpy.ma.core import ( | |
def assert_startswith(a, b): | |
# produces a better error message than assert_(a.startswith(b)) | |
assert_equal(a[:len(b)], b) | |
class SubArray(np.ndarray): | |
# Defines a generic np.ndarray subclass, that stores some metadata | |
# in the dictionary `info`. | |
def __new__(cls,arr,info={}): | |
x = np.asanyarray(arr).view(cls) | |
x.info = info.copy() | |
return x | |
def __array_finalize__(self, obj): | |
super().__array_finalize__(obj) | |
self.info = getattr(obj, 'info', {}).copy() | |
return | |
def __add__(self, other): | |
result = super().__add__(other) | |
result.info['added'] = result.info.get('added', 0) + 1 | |
return result | |
def __iadd__(self, other): | |
result = super().__iadd__(other) | |
result.info['iadded'] = result.info.get('iadded', 0) + 1 | |
return result | |
subarray = SubArray | |
class SubMaskedArray(MaskedArray): | |
"""Pure subclass of MaskedArray, keeping some info on subclass.""" | |
def __new__(cls, info=None, **kwargs): | |
obj = super().__new__(cls, **kwargs) | |
obj._optinfo['info'] = info | |
return obj | |
class MSubArray(SubArray, MaskedArray): | |
def __new__(cls, data, info={}, mask=nomask): | |
subarr = SubArray(data, info) | |
_data = MaskedArray.__new__(cls, data=subarr, mask=mask) | |
_data.info = subarr.info | |
return _data | |
def _series(self): | |
_view = self.view(MaskedArray) | |
_view._sharedmask = False | |
return _view | |
msubarray = MSubArray | |
# Also a subclass that overrides __str__, __repr__ and __setitem__, disallowing | |
# setting to non-class values (and thus np.ma.core.masked_print_option) | |
# and overrides __array_wrap__, updating the info dict, to check that this | |
# doesn't get destroyed by MaskedArray._update_from. But this one also needs | |
# its own iterator... | |
class CSAIterator: | |
""" | |
Flat iterator object that uses its own setter/getter | |
(works around ndarray.flat not propagating subclass setters/getters | |
see https://github.com/numpy/numpy/issues/4564) | |
roughly following MaskedIterator | |
""" | |
def __init__(self, a): | |
self._original = a | |
self._dataiter = a.view(np.ndarray).flat | |
def __iter__(self): | |
return self | |
def __getitem__(self, indx): | |
out = self._dataiter.__getitem__(indx) | |
if not isinstance(out, np.ndarray): | |
out = out.__array__() | |
out = out.view(type(self._original)) | |
return out | |
def __setitem__(self, index, value): | |
self._dataiter[index] = self._original._validate_input(value) | |
def __next__(self): | |
return next(self._dataiter).__array__().view(type(self._original)) | |
class ComplicatedSubArray(SubArray): | |
def __str__(self): | |
return f'myprefix {self.view(SubArray)} mypostfix' | |
def __repr__(self): | |
# Return a repr that does not start with 'name(' | |
return f'<{self.__class__.__name__} {self}>' | |
def _validate_input(self, value): | |
if not isinstance(value, ComplicatedSubArray): | |
raise ValueError("Can only set to MySubArray values") | |
return value | |
def __setitem__(self, item, value): | |
# validation ensures direct assignment with ndarray or | |
# masked_print_option will fail | |
super().__setitem__(item, self._validate_input(value)) | |
def __getitem__(self, item): | |
# ensure getter returns our own class also for scalars | |
value = super().__getitem__(item) | |
if not isinstance(value, np.ndarray): # scalar | |
value = value.__array__().view(ComplicatedSubArray) | |
return value | |
def flat(self): | |
return CSAIterator(self) | |
def flat(self, value): | |
y = self.ravel() | |
y[:] = value | |
def __array_wrap__(self, obj, context=None, return_scalar=False): | |
obj = super().__array_wrap__(obj, context, return_scalar) | |
if context is not None and context[0] is np.multiply: | |
obj.info['multiplied'] = obj.info.get('multiplied', 0) + 1 | |
return obj | |
class WrappedArray(NDArrayOperatorsMixin): | |
""" | |
Wrapping a MaskedArray rather than subclassing to test that | |
ufunc deferrals are commutative. | |
See: https://github.com/numpy/numpy/issues/15200) | |
""" | |
__slots__ = ('_array', 'attrs') | |
__array_priority__ = 20 | |
def __init__(self, array, **attrs): | |
self._array = array | |
self.attrs = attrs | |
def __repr__(self): | |
return f"{self.__class__.__name__}(\n{self._array}\n{self.attrs}\n)" | |
def __array__(self, dtype=None, copy=None): | |
return np.asarray(self._array) | |
def __array_ufunc__(self, ufunc, method, *inputs, **kwargs): | |
if method == '__call__': | |
inputs = [arg._array if isinstance(arg, self.__class__) else arg | |
for arg in inputs] | |
return self.__class__(ufunc(*inputs, **kwargs), **self.attrs) | |
else: | |
return NotImplemented | |
class TestSubclassing: | |
# Test suite for masked subclasses of ndarray. | |
def setup_method(self): | |
x = np.arange(5, dtype='float') | |
mx = msubarray(x, mask=[0, 1, 0, 0, 0]) | |
self.data = (x, mx) | |
def test_data_subclassing(self): | |
# Tests whether the subclass is kept. | |
x = np.arange(5) | |
m = [0, 0, 1, 0, 0] | |
xsub = SubArray(x) | |
xmsub = masked_array(xsub, mask=m) | |
assert_(isinstance(xmsub, MaskedArray)) | |
assert_equal(xmsub._data, xsub) | |
assert_(isinstance(xmsub._data, SubArray)) | |
def test_maskedarray_subclassing(self): | |
# Tests subclassing MaskedArray | |
(x, mx) = self.data | |
assert_(isinstance(mx._data, subarray)) | |
def test_masked_unary_operations(self): | |
# Tests masked_unary_operation | |
(x, mx) = self.data | |
with np.errstate(divide='ignore'): | |
assert_(isinstance(log(mx), msubarray)) | |
assert_equal(log(x), np.log(x)) | |
def test_masked_binary_operations(self): | |
# Tests masked_binary_operation | |
(x, mx) = self.data | |
# Result should be a msubarray | |
assert_(isinstance(add(mx, mx), msubarray)) | |
assert_(isinstance(add(mx, x), msubarray)) | |
# Result should work | |
assert_equal(add(mx, x), mx+x) | |
assert_(isinstance(add(mx, mx)._data, subarray)) | |
assert_(isinstance(add.outer(mx, mx), msubarray)) | |
assert_(isinstance(hypot(mx, mx), msubarray)) | |
assert_(isinstance(hypot(mx, x), msubarray)) | |
def test_masked_binary_operations2(self): | |
# Tests domained_masked_binary_operation | |
(x, mx) = self.data | |
xmx = masked_array(mx.data.__array__(), mask=mx.mask) | |
assert_(isinstance(divide(mx, mx), msubarray)) | |
assert_(isinstance(divide(mx, x), msubarray)) | |
assert_equal(divide(mx, mx), divide(xmx, xmx)) | |
def test_attributepropagation(self): | |
x = array(arange(5), mask=[0]+[1]*4) | |
my = masked_array(subarray(x)) | |
ym = msubarray(x) | |
# | |
z = (my+1) | |
assert_(isinstance(z, MaskedArray)) | |
assert_(not isinstance(z, MSubArray)) | |
assert_(isinstance(z._data, SubArray)) | |
assert_equal(z._data.info, {}) | |
# | |
z = (ym+1) | |
assert_(isinstance(z, MaskedArray)) | |
assert_(isinstance(z, MSubArray)) | |
assert_(isinstance(z._data, SubArray)) | |
assert_(z._data.info['added'] > 0) | |
# Test that inplace methods from data get used (gh-4617) | |
ym += 1 | |
assert_(isinstance(ym, MaskedArray)) | |
assert_(isinstance(ym, MSubArray)) | |
assert_(isinstance(ym._data, SubArray)) | |
assert_(ym._data.info['iadded'] > 0) | |
# | |
ym._set_mask([1, 0, 0, 0, 1]) | |
assert_equal(ym._mask, [1, 0, 0, 0, 1]) | |
ym._series._set_mask([0, 0, 0, 0, 1]) | |
assert_equal(ym._mask, [0, 0, 0, 0, 1]) | |
# | |
xsub = subarray(x, info={'name':'x'}) | |
mxsub = masked_array(xsub) | |
assert_(hasattr(mxsub, 'info')) | |
assert_equal(mxsub.info, xsub.info) | |
def test_subclasspreservation(self): | |
# Checks that masked_array(...,subok=True) preserves the class. | |
x = np.arange(5) | |
m = [0, 0, 1, 0, 0] | |
xinfo = [(i, j) for (i, j) in zip(x, m)] | |
xsub = MSubArray(x, mask=m, info={'xsub':xinfo}) | |
# | |
mxsub = masked_array(xsub, subok=False) | |
assert_(not isinstance(mxsub, MSubArray)) | |
assert_(isinstance(mxsub, MaskedArray)) | |
assert_equal(mxsub._mask, m) | |
# | |
mxsub = asarray(xsub) | |
assert_(not isinstance(mxsub, MSubArray)) | |
assert_(isinstance(mxsub, MaskedArray)) | |
assert_equal(mxsub._mask, m) | |
# | |
mxsub = masked_array(xsub, subok=True) | |
assert_(isinstance(mxsub, MSubArray)) | |
assert_equal(mxsub.info, xsub.info) | |
assert_equal(mxsub._mask, xsub._mask) | |
# | |
mxsub = asanyarray(xsub) | |
assert_(isinstance(mxsub, MSubArray)) | |
assert_equal(mxsub.info, xsub.info) | |
assert_equal(mxsub._mask, m) | |
def test_subclass_items(self): | |
"""test that getter and setter go via baseclass""" | |
x = np.arange(5) | |
xcsub = ComplicatedSubArray(x) | |
mxcsub = masked_array(xcsub, mask=[True, False, True, False, False]) | |
# getter should return a ComplicatedSubArray, even for single item | |
# first check we wrote ComplicatedSubArray correctly | |
assert_(isinstance(xcsub[1], ComplicatedSubArray)) | |
assert_(isinstance(xcsub[1,...], ComplicatedSubArray)) | |
assert_(isinstance(xcsub[1:4], ComplicatedSubArray)) | |
# now that it propagates inside the MaskedArray | |
assert_(isinstance(mxcsub[1], ComplicatedSubArray)) | |
assert_(isinstance(mxcsub[1,...].data, ComplicatedSubArray)) | |
assert_(mxcsub[0] is masked) | |
assert_(isinstance(mxcsub[0,...].data, ComplicatedSubArray)) | |
assert_(isinstance(mxcsub[1:4].data, ComplicatedSubArray)) | |
# also for flattened version (which goes via MaskedIterator) | |
assert_(isinstance(mxcsub.flat[1].data, ComplicatedSubArray)) | |
assert_(mxcsub.flat[0] is masked) | |
assert_(isinstance(mxcsub.flat[1:4].base, ComplicatedSubArray)) | |
# setter should only work with ComplicatedSubArray input | |
# first check we wrote ComplicatedSubArray correctly | |
assert_raises(ValueError, xcsub.__setitem__, 1, x[4]) | |
# now that it propagates inside the MaskedArray | |
assert_raises(ValueError, mxcsub.__setitem__, 1, x[4]) | |
assert_raises(ValueError, mxcsub.__setitem__, slice(1, 4), x[1:4]) | |
mxcsub[1] = xcsub[4] | |
mxcsub[1:4] = xcsub[1:4] | |
# also for flattened version (which goes via MaskedIterator) | |
assert_raises(ValueError, mxcsub.flat.__setitem__, 1, x[4]) | |
assert_raises(ValueError, mxcsub.flat.__setitem__, slice(1, 4), x[1:4]) | |
mxcsub.flat[1] = xcsub[4] | |
mxcsub.flat[1:4] = xcsub[1:4] | |
def test_subclass_nomask_items(self): | |
x = np.arange(5) | |
xcsub = ComplicatedSubArray(x) | |
mxcsub_nomask = masked_array(xcsub) | |
assert_(isinstance(mxcsub_nomask[1,...].data, ComplicatedSubArray)) | |
assert_(isinstance(mxcsub_nomask[0,...].data, ComplicatedSubArray)) | |
assert_(isinstance(mxcsub_nomask[1], ComplicatedSubArray)) | |
assert_(isinstance(mxcsub_nomask[0], ComplicatedSubArray)) | |
def test_subclass_repr(self): | |
"""test that repr uses the name of the subclass | |
and 'array' for np.ndarray""" | |
x = np.arange(5) | |
mx = masked_array(x, mask=[True, False, True, False, False]) | |
assert_startswith(repr(mx), 'masked_array') | |
xsub = SubArray(x) | |
mxsub = masked_array(xsub, mask=[True, False, True, False, False]) | |
assert_startswith(repr(mxsub), | |
f'masked_{SubArray.__name__}(data=[--, 1, --, 3, 4]') | |
def test_subclass_str(self): | |
"""test str with subclass that has overridden str, setitem""" | |
# first without override | |
x = np.arange(5) | |
xsub = SubArray(x) | |
mxsub = masked_array(xsub, mask=[True, False, True, False, False]) | |
assert_equal(str(mxsub), '[-- 1 -- 3 4]') | |
xcsub = ComplicatedSubArray(x) | |
assert_raises(ValueError, xcsub.__setitem__, 0, | |
np.ma.core.masked_print_option) | |
mxcsub = masked_array(xcsub, mask=[True, False, True, False, False]) | |
assert_equal(str(mxcsub), 'myprefix [-- 1 -- 3 4] mypostfix') | |
def test_pure_subclass_info_preservation(self): | |
# Test that ufuncs and methods conserve extra information consistently; | |
# see gh-7122. | |
arr1 = SubMaskedArray('test', data=[1,2,3,4,5,6]) | |
arr2 = SubMaskedArray(data=[0,1,2,3,4,5]) | |
diff1 = np.subtract(arr1, arr2) | |
assert_('info' in diff1._optinfo) | |
assert_(diff1._optinfo['info'] == 'test') | |
diff2 = arr1 - arr2 | |
assert_('info' in diff2._optinfo) | |
assert_(diff2._optinfo['info'] == 'test') | |
class ArrayNoInheritance: | |
"""Quantity-like class that does not inherit from ndarray""" | |
def __init__(self, data, units): | |
self.magnitude = data | |
self.units = units | |
def __getattr__(self, attr): | |
return getattr(self.magnitude, attr) | |
def test_array_no_inheritance(): | |
data_masked = np.ma.array([1, 2, 3], mask=[True, False, True]) | |
data_masked_units = ArrayNoInheritance(data_masked, 'meters') | |
# Get the masked representation of the Quantity-like class | |
new_array = np.ma.array(data_masked_units) | |
assert_equal(data_masked.data, new_array.data) | |
assert_equal(data_masked.mask, new_array.mask) | |
# Test sharing the mask | |
data_masked.mask = [True, False, False] | |
assert_equal(data_masked.mask, new_array.mask) | |
assert_(new_array.sharedmask) | |
# Get the masked representation of the Quantity-like class | |
new_array = np.ma.array(data_masked_units, copy=True) | |
assert_equal(data_masked.data, new_array.data) | |
assert_equal(data_masked.mask, new_array.mask) | |
# Test that the mask is not shared when copy=True | |
data_masked.mask = [True, False, True] | |
assert_equal([True, False, False], new_array.mask) | |
assert_(not new_array.sharedmask) | |
# Get the masked representation of the Quantity-like class | |
new_array = np.ma.array(data_masked_units, keep_mask=False) | |
assert_equal(data_masked.data, new_array.data) | |
# The change did not affect the original mask | |
assert_equal(data_masked.mask, [True, False, True]) | |
# Test that the mask is False and not shared when keep_mask=False | |
assert_(not new_array.mask) | |
assert_(not new_array.sharedmask) | |
class TestClassWrapping: | |
# Test suite for classes that wrap MaskedArrays | |
def setup_method(self): | |
m = np.ma.masked_array([1, 3, 5], mask=[False, True, False]) | |
wm = WrappedArray(m) | |
self.data = (m, wm) | |
def test_masked_unary_operations(self): | |
# Tests masked_unary_operation | |
(m, wm) = self.data | |
with np.errstate(divide='ignore'): | |
assert_(isinstance(np.log(wm), WrappedArray)) | |
def test_masked_binary_operations(self): | |
# Tests masked_binary_operation | |
(m, wm) = self.data | |
# Result should be a WrappedArray | |
assert_(isinstance(np.add(wm, wm), WrappedArray)) | |
assert_(isinstance(np.add(m, wm), WrappedArray)) | |
assert_(isinstance(np.add(wm, m), WrappedArray)) | |
# add and '+' should call the same ufunc | |
assert_equal(np.add(m, wm), m + wm) | |
assert_(isinstance(np.hypot(m, wm), WrappedArray)) | |
assert_(isinstance(np.hypot(wm, m), WrappedArray)) | |
# Test domained binary operations | |
assert_(isinstance(np.divide(wm, m), WrappedArray)) | |
assert_(isinstance(np.divide(m, wm), WrappedArray)) | |
assert_equal(np.divide(wm, m) * m, np.divide(m, m) * wm) | |
# Test broadcasting | |
m2 = np.stack([m, m]) | |
assert_(isinstance(np.divide(wm, m2), WrappedArray)) | |
assert_(isinstance(np.divide(m2, wm), WrappedArray)) | |
assert_equal(np.divide(m2, wm), np.divide(wm, m2)) | |
def test_mixins_have_slots(self): | |
mixin = NDArrayOperatorsMixin() | |
# Should raise an error | |
assert_raises(AttributeError, mixin.__setattr__, "not_a_real_attr", 1) | |
m = np.ma.masked_array([1, 3, 5], mask=[False, True, False]) | |
wm = WrappedArray(m) | |
assert_raises(AttributeError, wm.__setattr__, "not_an_attr", 2) | |