|
import warnings |
|
|
|
|
|
|
|
warnings.warn("Importing from numpy.matlib is deprecated since 1.19.0. " |
|
"The matrix subclass is not the recommended way to represent " |
|
"matrices or deal with linear algebra (see " |
|
"https://docs.scipy.org/doc/numpy/user/numpy-for-matlab-users.html). " |
|
"Please adjust your code to use regular ndarray. ", |
|
PendingDeprecationWarning, stacklevel=2) |
|
|
|
import numpy as np |
|
from numpy.matrixlib.defmatrix import matrix, asmatrix |
|
|
|
|
|
|
|
from numpy import * |
|
|
|
__version__ = np.__version__ |
|
|
|
__all__ = np.__all__[:] |
|
__all__ += ['rand', 'randn', 'repmat'] |
|
|
|
def empty(shape, dtype=None, order='C'): |
|
"""Return a new matrix of given shape and type, without initializing entries. |
|
|
|
Parameters |
|
---------- |
|
shape : int or tuple of int |
|
Shape of the empty matrix. |
|
dtype : data-type, optional |
|
Desired output data-type. |
|
order : {'C', 'F'}, optional |
|
Whether to store multi-dimensional data in row-major |
|
(C-style) or column-major (Fortran-style) order in |
|
memory. |
|
|
|
See Also |
|
-------- |
|
numpy.empty : Equivalent array function. |
|
matlib.zeros : Return a matrix of zeros. |
|
matlib.ones : Return a matrix of ones. |
|
|
|
Notes |
|
----- |
|
Unlike other matrix creation functions (e.g. `matlib.zeros`, |
|
`matlib.ones`), `matlib.empty` does not initialize the values of the |
|
matrix, and may therefore be marginally faster. However, the values |
|
stored in the newly allocated matrix are arbitrary. For reproducible |
|
behavior, be sure to set each element of the matrix before reading. |
|
|
|
Examples |
|
-------- |
|
>>> import numpy.matlib |
|
>>> np.matlib.empty((2, 2)) # filled with random data |
|
matrix([[ 6.76425276e-320, 9.79033856e-307], # random |
|
[ 7.39337286e-309, 3.22135945e-309]]) |
|
>>> np.matlib.empty((2, 2), dtype=int) |
|
matrix([[ 6600475, 0], # random |
|
[ 6586976, 22740995]]) |
|
|
|
""" |
|
return ndarray.__new__(matrix, shape, dtype, order=order) |
|
|
|
def ones(shape, dtype=None, order='C'): |
|
""" |
|
Matrix of ones. |
|
|
|
Return a matrix of given shape and type, filled with ones. |
|
|
|
Parameters |
|
---------- |
|
shape : {sequence of ints, int} |
|
Shape of the matrix |
|
dtype : data-type, optional |
|
The desired data-type for the matrix, default is np.float64. |
|
order : {'C', 'F'}, optional |
|
Whether to store matrix in C- or Fortran-contiguous order, |
|
default is 'C'. |
|
|
|
Returns |
|
------- |
|
out : matrix |
|
Matrix of ones of given shape, dtype, and order. |
|
|
|
See Also |
|
-------- |
|
ones : Array of ones. |
|
matlib.zeros : Zero matrix. |
|
|
|
Notes |
|
----- |
|
If `shape` has length one i.e. ``(N,)``, or is a scalar ``N``, |
|
`out` becomes a single row matrix of shape ``(1,N)``. |
|
|
|
Examples |
|
-------- |
|
>>> np.matlib.ones((2,3)) |
|
matrix([[1., 1., 1.], |
|
[1., 1., 1.]]) |
|
|
|
>>> np.matlib.ones(2) |
|
matrix([[1., 1.]]) |
|
|
|
""" |
|
a = ndarray.__new__(matrix, shape, dtype, order=order) |
|
a.fill(1) |
|
return a |
|
|
|
def zeros(shape, dtype=None, order='C'): |
|
""" |
|
Return a matrix of given shape and type, filled with zeros. |
|
|
|
Parameters |
|
---------- |
|
shape : int or sequence of ints |
|
Shape of the matrix |
|
dtype : data-type, optional |
|
The desired data-type for the matrix, default is float. |
|
order : {'C', 'F'}, optional |
|
Whether to store the result in C- or Fortran-contiguous order, |
|
default is 'C'. |
|
|
|
Returns |
|
------- |
|
out : matrix |
|
Zero matrix of given shape, dtype, and order. |
|
|
|
See Also |
|
-------- |
|
numpy.zeros : Equivalent array function. |
|
matlib.ones : Return a matrix of ones. |
|
|
|
Notes |
|
----- |
|
If `shape` has length one i.e. ``(N,)``, or is a scalar ``N``, |
|
`out` becomes a single row matrix of shape ``(1,N)``. |
|
|
|
Examples |
|
-------- |
|
>>> import numpy.matlib |
|
>>> np.matlib.zeros((2, 3)) |
|
matrix([[0., 0., 0.], |
|
[0., 0., 0.]]) |
|
|
|
>>> np.matlib.zeros(2) |
|
matrix([[0., 0.]]) |
|
|
|
""" |
|
a = ndarray.__new__(matrix, shape, dtype, order=order) |
|
a.fill(0) |
|
return a |
|
|
|
def identity(n,dtype=None): |
|
""" |
|
Returns the square identity matrix of given size. |
|
|
|
Parameters |
|
---------- |
|
n : int |
|
Size of the returned identity matrix. |
|
dtype : data-type, optional |
|
Data-type of the output. Defaults to ``float``. |
|
|
|
Returns |
|
------- |
|
out : matrix |
|
`n` x `n` matrix with its main diagonal set to one, |
|
and all other elements zero. |
|
|
|
See Also |
|
-------- |
|
numpy.identity : Equivalent array function. |
|
matlib.eye : More general matrix identity function. |
|
|
|
Examples |
|
-------- |
|
>>> import numpy.matlib |
|
>>> np.matlib.identity(3, dtype=int) |
|
matrix([[1, 0, 0], |
|
[0, 1, 0], |
|
[0, 0, 1]]) |
|
|
|
""" |
|
a = array([1]+n*[0], dtype=dtype) |
|
b = empty((n, n), dtype=dtype) |
|
b.flat = a |
|
return b |
|
|
|
def eye(n,M=None, k=0, dtype=float, order='C'): |
|
""" |
|
Return a matrix with ones on the diagonal and zeros elsewhere. |
|
|
|
Parameters |
|
---------- |
|
n : int |
|
Number of rows in the output. |
|
M : int, optional |
|
Number of columns in the output, defaults to `n`. |
|
k : int, optional |
|
Index of the diagonal: 0 refers to the main diagonal, |
|
a positive value refers to an upper diagonal, |
|
and a negative value to a lower diagonal. |
|
dtype : dtype, optional |
|
Data-type of the returned matrix. |
|
order : {'C', 'F'}, optional |
|
Whether the output should be stored in row-major (C-style) or |
|
column-major (Fortran-style) order in memory. |
|
|
|
.. versionadded:: 1.14.0 |
|
|
|
Returns |
|
------- |
|
I : matrix |
|
A `n` x `M` matrix where all elements are equal to zero, |
|
except for the `k`-th diagonal, whose values are equal to one. |
|
|
|
See Also |
|
-------- |
|
numpy.eye : Equivalent array function. |
|
identity : Square identity matrix. |
|
|
|
Examples |
|
-------- |
|
>>> import numpy.matlib |
|
>>> np.matlib.eye(3, k=1, dtype=float) |
|
matrix([[0., 1., 0.], |
|
[0., 0., 1.], |
|
[0., 0., 0.]]) |
|
|
|
""" |
|
return asmatrix(np.eye(n, M=M, k=k, dtype=dtype, order=order)) |
|
|
|
def rand(*args): |
|
""" |
|
Return a matrix of random values with given shape. |
|
|
|
Create a matrix of the given shape and propagate it with |
|
random samples from a uniform distribution over ``[0, 1)``. |
|
|
|
Parameters |
|
---------- |
|
\\*args : Arguments |
|
Shape of the output. |
|
If given as N integers, each integer specifies the size of one |
|
dimension. |
|
If given as a tuple, this tuple gives the complete shape. |
|
|
|
Returns |
|
------- |
|
out : ndarray |
|
The matrix of random values with shape given by `\\*args`. |
|
|
|
See Also |
|
-------- |
|
randn, numpy.random.RandomState.rand |
|
|
|
Examples |
|
-------- |
|
>>> np.random.seed(123) |
|
>>> import numpy.matlib |
|
>>> np.matlib.rand(2, 3) |
|
matrix([[0.69646919, 0.28613933, 0.22685145], |
|
[0.55131477, 0.71946897, 0.42310646]]) |
|
>>> np.matlib.rand((2, 3)) |
|
matrix([[0.9807642 , 0.68482974, 0.4809319 ], |
|
[0.39211752, 0.34317802, 0.72904971]]) |
|
|
|
If the first argument is a tuple, other arguments are ignored: |
|
|
|
>>> np.matlib.rand((2, 3), 4) |
|
matrix([[0.43857224, 0.0596779 , 0.39804426], |
|
[0.73799541, 0.18249173, 0.17545176]]) |
|
|
|
""" |
|
if isinstance(args[0], tuple): |
|
args = args[0] |
|
return asmatrix(np.random.rand(*args)) |
|
|
|
def randn(*args): |
|
""" |
|
Return a random matrix with data from the "standard normal" distribution. |
|
|
|
`randn` generates a matrix filled with random floats sampled from a |
|
univariate "normal" (Gaussian) distribution of mean 0 and variance 1. |
|
|
|
Parameters |
|
---------- |
|
\\*args : Arguments |
|
Shape of the output. |
|
If given as N integers, each integer specifies the size of one |
|
dimension. If given as a tuple, this tuple gives the complete shape. |
|
|
|
Returns |
|
------- |
|
Z : matrix of floats |
|
A matrix of floating-point samples drawn from the standard normal |
|
distribution. |
|
|
|
See Also |
|
-------- |
|
rand, numpy.random.RandomState.randn |
|
|
|
Notes |
|
----- |
|
For random samples from the normal distribution with mean ``mu`` and |
|
standard deviation ``sigma``, use:: |
|
|
|
sigma * np.matlib.randn(...) + mu |
|
|
|
Examples |
|
-------- |
|
>>> np.random.seed(123) |
|
>>> import numpy.matlib |
|
>>> np.matlib.randn(1) |
|
matrix([[-1.0856306]]) |
|
>>> np.matlib.randn(1, 2, 3) |
|
matrix([[ 0.99734545, 0.2829785 , -1.50629471], |
|
[-0.57860025, 1.65143654, -2.42667924]]) |
|
|
|
Two-by-four matrix of samples from the normal distribution with |
|
mean 3 and standard deviation 2.5: |
|
|
|
>>> 2.5 * np.matlib.randn((2, 4)) + 3 |
|
matrix([[1.92771843, 6.16484065, 0.83314899, 1.30278462], |
|
[2.76322758, 6.72847407, 1.40274501, 1.8900451 ]]) |
|
|
|
""" |
|
if isinstance(args[0], tuple): |
|
args = args[0] |
|
return asmatrix(np.random.randn(*args)) |
|
|
|
def repmat(a, m, n): |
|
""" |
|
Repeat a 0-D to 2-D array or matrix MxN times. |
|
|
|
Parameters |
|
---------- |
|
a : array_like |
|
The array or matrix to be repeated. |
|
m, n : int |
|
The number of times `a` is repeated along the first and second axes. |
|
|
|
Returns |
|
------- |
|
out : ndarray |
|
The result of repeating `a`. |
|
|
|
Examples |
|
-------- |
|
>>> import numpy.matlib |
|
>>> a0 = np.array(1) |
|
>>> np.matlib.repmat(a0, 2, 3) |
|
array([[1, 1, 1], |
|
[1, 1, 1]]) |
|
|
|
>>> a1 = np.arange(4) |
|
>>> np.matlib.repmat(a1, 2, 2) |
|
array([[0, 1, 2, 3, 0, 1, 2, 3], |
|
[0, 1, 2, 3, 0, 1, 2, 3]]) |
|
|
|
>>> a2 = np.asmatrix(np.arange(6).reshape(2, 3)) |
|
>>> np.matlib.repmat(a2, 2, 3) |
|
matrix([[0, 1, 2, 0, 1, 2, 0, 1, 2], |
|
[3, 4, 5, 3, 4, 5, 3, 4, 5], |
|
[0, 1, 2, 0, 1, 2, 0, 1, 2], |
|
[3, 4, 5, 3, 4, 5, 3, 4, 5]]) |
|
|
|
""" |
|
a = asanyarray(a) |
|
ndim = a.ndim |
|
if ndim == 0: |
|
origrows, origcols = (1, 1) |
|
elif ndim == 1: |
|
origrows, origcols = (1, a.shape[0]) |
|
else: |
|
origrows, origcols = a.shape |
|
rows = origrows * m |
|
cols = origcols * n |
|
c = a.reshape(1, a.size).repeat(m, 0).reshape(rows, origcols).repeat(n, 0) |
|
return c.reshape(rows, cols) |
|
|