|
from collections.abc import Callable |
|
from typing import Any, overload, TypeVar, Literal |
|
|
|
import numpy as np |
|
from numpy import ( |
|
dtype, |
|
float32, |
|
float64, |
|
int8, |
|
int16, |
|
int32, |
|
int64, |
|
int_, |
|
uint, |
|
uint8, |
|
uint16, |
|
uint32, |
|
uint64, |
|
) |
|
from numpy.random import BitGenerator, SeedSequence |
|
from numpy._typing import ( |
|
ArrayLike, |
|
NDArray, |
|
_ArrayLikeFloat_co, |
|
_ArrayLikeInt_co, |
|
_DoubleCodes, |
|
_DTypeLikeBool, |
|
_DTypeLikeInt, |
|
_DTypeLikeUInt, |
|
_Float32Codes, |
|
_Float64Codes, |
|
_FloatLike_co, |
|
_Int8Codes, |
|
_Int16Codes, |
|
_Int32Codes, |
|
_Int64Codes, |
|
_IntCodes, |
|
_ShapeLike, |
|
_SingleCodes, |
|
_SupportsDType, |
|
_UInt8Codes, |
|
_UInt16Codes, |
|
_UInt32Codes, |
|
_UInt64Codes, |
|
_UIntCodes, |
|
) |
|
|
|
_ArrayType = TypeVar("_ArrayType", bound=NDArray[Any]) |
|
|
|
_DTypeLikeFloat32 = ( |
|
dtype[float32] |
|
| _SupportsDType[dtype[float32]] |
|
| type[float32] |
|
| _Float32Codes |
|
| _SingleCodes |
|
) |
|
|
|
_DTypeLikeFloat64 = ( |
|
dtype[float64] |
|
| _SupportsDType[dtype[float64]] |
|
| type[float] |
|
| type[float64] |
|
| _Float64Codes |
|
| _DoubleCodes |
|
) |
|
|
|
class Generator: |
|
def __init__(self, bit_generator: BitGenerator) -> None: ... |
|
def __repr__(self) -> str: ... |
|
def __str__(self) -> str: ... |
|
def __getstate__(self) -> None: ... |
|
def __setstate__(self, state: dict[str, Any] | None) -> None: ... |
|
def __reduce__(self) -> tuple[ |
|
Callable[[BitGenerator], Generator], |
|
tuple[BitGenerator], |
|
None]: ... |
|
@property |
|
def bit_generator(self) -> BitGenerator: ... |
|
def spawn(self, n_children: int) -> list[Generator]: ... |
|
def bytes(self, length: int) -> bytes: ... |
|
@overload |
|
def standard_normal( |
|
self, |
|
size: None = ..., |
|
dtype: _DTypeLikeFloat32 | _DTypeLikeFloat64 = ..., |
|
out: None = ..., |
|
) -> float: ... |
|
@overload |
|
def standard_normal( |
|
self, |
|
size: _ShapeLike = ..., |
|
) -> NDArray[float64]: ... |
|
@overload |
|
def standard_normal( |
|
self, |
|
*, |
|
out: NDArray[float64] = ..., |
|
) -> NDArray[float64]: ... |
|
@overload |
|
def standard_normal( |
|
self, |
|
size: _ShapeLike = ..., |
|
dtype: _DTypeLikeFloat32 = ..., |
|
out: None | NDArray[float32] = ..., |
|
) -> NDArray[float32]: ... |
|
@overload |
|
def standard_normal( |
|
self, |
|
size: _ShapeLike = ..., |
|
dtype: _DTypeLikeFloat64 = ..., |
|
out: None | NDArray[float64] = ..., |
|
) -> NDArray[float64]: ... |
|
@overload |
|
def permutation(self, x: int, axis: int = ...) -> NDArray[int64]: ... |
|
@overload |
|
def permutation(self, x: ArrayLike, axis: int = ...) -> NDArray[Any]: ... |
|
@overload |
|
def standard_exponential( |
|
self, |
|
size: None = ..., |
|
dtype: _DTypeLikeFloat32 | _DTypeLikeFloat64 = ..., |
|
method: Literal["zig", "inv"] = ..., |
|
out: None = ..., |
|
) -> float: ... |
|
@overload |
|
def standard_exponential( |
|
self, |
|
size: _ShapeLike = ..., |
|
) -> NDArray[float64]: ... |
|
@overload |
|
def standard_exponential( |
|
self, |
|
*, |
|
out: NDArray[float64] = ..., |
|
) -> NDArray[float64]: ... |
|
@overload |
|
def standard_exponential( |
|
self, |
|
size: _ShapeLike = ..., |
|
*, |
|
method: Literal["zig", "inv"] = ..., |
|
out: None | NDArray[float64] = ..., |
|
) -> NDArray[float64]: ... |
|
@overload |
|
def standard_exponential( |
|
self, |
|
size: _ShapeLike = ..., |
|
dtype: _DTypeLikeFloat32 = ..., |
|
method: Literal["zig", "inv"] = ..., |
|
out: None | NDArray[float32] = ..., |
|
) -> NDArray[float32]: ... |
|
@overload |
|
def standard_exponential( |
|
self, |
|
size: _ShapeLike = ..., |
|
dtype: _DTypeLikeFloat64 = ..., |
|
method: Literal["zig", "inv"] = ..., |
|
out: None | NDArray[float64] = ..., |
|
) -> NDArray[float64]: ... |
|
@overload |
|
def random( |
|
self, |
|
size: None = ..., |
|
dtype: _DTypeLikeFloat32 | _DTypeLikeFloat64 = ..., |
|
out: None = ..., |
|
) -> float: ... |
|
@overload |
|
def random( |
|
self, |
|
*, |
|
out: NDArray[float64] = ..., |
|
) -> NDArray[float64]: ... |
|
@overload |
|
def random( |
|
self, |
|
size: _ShapeLike = ..., |
|
*, |
|
out: None | NDArray[float64] = ..., |
|
) -> NDArray[float64]: ... |
|
@overload |
|
def random( |
|
self, |
|
size: _ShapeLike = ..., |
|
dtype: _DTypeLikeFloat32 = ..., |
|
out: None | NDArray[float32] = ..., |
|
) -> NDArray[float32]: ... |
|
@overload |
|
def random( |
|
self, |
|
size: _ShapeLike = ..., |
|
dtype: _DTypeLikeFloat64 = ..., |
|
out: None | NDArray[float64] = ..., |
|
) -> NDArray[float64]: ... |
|
@overload |
|
def beta( |
|
self, |
|
a: _FloatLike_co, |
|
b: _FloatLike_co, |
|
size: None = ..., |
|
) -> float: ... |
|
@overload |
|
def beta( |
|
self, a: _ArrayLikeFloat_co, b: _ArrayLikeFloat_co, size: None | _ShapeLike = ... |
|
) -> NDArray[float64]: ... |
|
@overload |
|
def exponential(self, scale: _FloatLike_co = ..., size: None = ...) -> float: ... |
|
@overload |
|
def exponential( |
|
self, scale: _ArrayLikeFloat_co = ..., size: None | _ShapeLike = ... |
|
) -> NDArray[float64]: ... |
|
@overload |
|
def integers( |
|
self, |
|
low: int, |
|
high: None | int = ..., |
|
size: None = ..., |
|
) -> int: ... |
|
@overload |
|
def integers( |
|
self, |
|
low: int, |
|
high: None | int = ..., |
|
size: None = ..., |
|
dtype: type[bool] = ..., |
|
endpoint: bool = ..., |
|
) -> bool: ... |
|
@overload |
|
def integers( |
|
self, |
|
low: int, |
|
high: None | int = ..., |
|
size: None = ..., |
|
dtype: type[np.bool] = ..., |
|
endpoint: bool = ..., |
|
) -> np.bool: ... |
|
@overload |
|
def integers( |
|
self, |
|
low: int, |
|
high: None | int = ..., |
|
size: None = ..., |
|
dtype: type[int] = ..., |
|
endpoint: bool = ..., |
|
) -> int: ... |
|
@overload |
|
def integers( |
|
self, |
|
low: int, |
|
high: None | int = ..., |
|
size: None = ..., |
|
dtype: dtype[uint8] | type[uint8] | _UInt8Codes | _SupportsDType[dtype[uint8]] = ..., |
|
endpoint: bool = ..., |
|
) -> uint8: ... |
|
@overload |
|
def integers( |
|
self, |
|
low: int, |
|
high: None | int = ..., |
|
size: None = ..., |
|
dtype: dtype[uint16] | type[uint16] | _UInt16Codes | _SupportsDType[dtype[uint16]] = ..., |
|
endpoint: bool = ..., |
|
) -> uint16: ... |
|
@overload |
|
def integers( |
|
self, |
|
low: int, |
|
high: None | int = ..., |
|
size: None = ..., |
|
dtype: dtype[uint32] | type[uint32] | _UInt32Codes | _SupportsDType[dtype[uint32]] = ..., |
|
endpoint: bool = ..., |
|
) -> uint32: ... |
|
@overload |
|
def integers( |
|
self, |
|
low: int, |
|
high: None | int = ..., |
|
size: None = ..., |
|
dtype: dtype[uint] | type[uint] | _UIntCodes | _SupportsDType[dtype[uint]] = ..., |
|
endpoint: bool = ..., |
|
) -> uint: ... |
|
@overload |
|
def integers( |
|
self, |
|
low: int, |
|
high: None | int = ..., |
|
size: None = ..., |
|
dtype: dtype[uint64] | type[uint64] | _UInt64Codes | _SupportsDType[dtype[uint64]] = ..., |
|
endpoint: bool = ..., |
|
) -> uint64: ... |
|
@overload |
|
def integers( |
|
self, |
|
low: int, |
|
high: None | int = ..., |
|
size: None = ..., |
|
dtype: dtype[int8] | type[int8] | _Int8Codes | _SupportsDType[dtype[int8]] = ..., |
|
endpoint: bool = ..., |
|
) -> int8: ... |
|
@overload |
|
def integers( |
|
self, |
|
low: int, |
|
high: None | int = ..., |
|
size: None = ..., |
|
dtype: dtype[int16] | type[int16] | _Int16Codes | _SupportsDType[dtype[int16]] = ..., |
|
endpoint: bool = ..., |
|
) -> int16: ... |
|
@overload |
|
def integers( |
|
self, |
|
low: int, |
|
high: None | int = ..., |
|
size: None = ..., |
|
dtype: dtype[int32] | type[int32] | _Int32Codes | _SupportsDType[dtype[int32]] = ..., |
|
endpoint: bool = ..., |
|
) -> int32: ... |
|
@overload |
|
def integers( |
|
self, |
|
low: int, |
|
high: None | int = ..., |
|
size: None = ..., |
|
dtype: dtype[int_] | type[int] | type[int_] | _IntCodes | _SupportsDType[dtype[int_]] = ..., |
|
endpoint: bool = ..., |
|
) -> int_: ... |
|
@overload |
|
def integers( |
|
self, |
|
low: int, |
|
high: None | int = ..., |
|
size: None = ..., |
|
dtype: dtype[int64] | type[int64] | _Int64Codes | _SupportsDType[dtype[int64]] = ..., |
|
endpoint: bool = ..., |
|
) -> int64: ... |
|
@overload |
|
def integers( |
|
self, |
|
low: _ArrayLikeInt_co, |
|
high: None | _ArrayLikeInt_co = ..., |
|
size: None | _ShapeLike = ..., |
|
) -> NDArray[int64]: ... |
|
@overload |
|
def integers( |
|
self, |
|
low: _ArrayLikeInt_co, |
|
high: None | _ArrayLikeInt_co = ..., |
|
size: None | _ShapeLike = ..., |
|
dtype: _DTypeLikeBool = ..., |
|
endpoint: bool = ..., |
|
) -> NDArray[np.bool]: ... |
|
@overload |
|
def integers( |
|
self, |
|
low: _ArrayLikeInt_co, |
|
high: None | _ArrayLikeInt_co = ..., |
|
size: None | _ShapeLike = ..., |
|
dtype: dtype[int8] | type[int8] | _Int8Codes | _SupportsDType[dtype[int8]] = ..., |
|
endpoint: bool = ..., |
|
) -> NDArray[int8]: ... |
|
@overload |
|
def integers( |
|
self, |
|
low: _ArrayLikeInt_co, |
|
high: None | _ArrayLikeInt_co = ..., |
|
size: None | _ShapeLike = ..., |
|
dtype: dtype[int16] | type[int16] | _Int16Codes | _SupportsDType[dtype[int16]] = ..., |
|
endpoint: bool = ..., |
|
) -> NDArray[int16]: ... |
|
@overload |
|
def integers( |
|
self, |
|
low: _ArrayLikeInt_co, |
|
high: None | _ArrayLikeInt_co = ..., |
|
size: None | _ShapeLike = ..., |
|
dtype: dtype[int32] | type[int32] | _Int32Codes | _SupportsDType[dtype[int32]] = ..., |
|
endpoint: bool = ..., |
|
) -> NDArray[int32]: ... |
|
@overload |
|
def integers( |
|
self, |
|
low: _ArrayLikeInt_co, |
|
high: None | _ArrayLikeInt_co = ..., |
|
size: None | _ShapeLike = ..., |
|
dtype: None | dtype[int64] | type[int64] | _Int64Codes | _SupportsDType[dtype[int64]] = ..., |
|
endpoint: bool = ..., |
|
) -> NDArray[int64]: ... |
|
@overload |
|
def integers( |
|
self, |
|
low: _ArrayLikeInt_co, |
|
high: None | _ArrayLikeInt_co = ..., |
|
size: None | _ShapeLike = ..., |
|
dtype: dtype[uint8] | type[uint8] | _UInt8Codes | _SupportsDType[dtype[uint8]] = ..., |
|
endpoint: bool = ..., |
|
) -> NDArray[uint8]: ... |
|
@overload |
|
def integers( |
|
self, |
|
low: _ArrayLikeInt_co, |
|
high: None | _ArrayLikeInt_co = ..., |
|
size: None | _ShapeLike = ..., |
|
dtype: dtype[uint16] | type[uint16] | _UInt16Codes | _SupportsDType[dtype[uint16]] = ..., |
|
endpoint: bool = ..., |
|
) -> NDArray[uint16]: ... |
|
@overload |
|
def integers( |
|
self, |
|
low: _ArrayLikeInt_co, |
|
high: None | _ArrayLikeInt_co = ..., |
|
size: None | _ShapeLike = ..., |
|
dtype: dtype[uint32] | type[uint32] | _UInt32Codes | _SupportsDType[dtype[uint32]] = ..., |
|
endpoint: bool = ..., |
|
) -> NDArray[uint32]: ... |
|
@overload |
|
def integers( |
|
self, |
|
low: _ArrayLikeInt_co, |
|
high: None | _ArrayLikeInt_co = ..., |
|
size: None | _ShapeLike = ..., |
|
dtype: dtype[uint64] | type[uint64] | _UInt64Codes | _SupportsDType[dtype[uint64]] = ..., |
|
endpoint: bool = ..., |
|
) -> NDArray[uint64]: ... |
|
@overload |
|
def integers( |
|
self, |
|
low: _ArrayLikeInt_co, |
|
high: None | _ArrayLikeInt_co = ..., |
|
size: None | _ShapeLike = ..., |
|
dtype: dtype[int_] | type[int] | type[int_] | _IntCodes | _SupportsDType[dtype[int_]] = ..., |
|
endpoint: bool = ..., |
|
) -> NDArray[int_]: ... |
|
@overload |
|
def integers( |
|
self, |
|
low: _ArrayLikeInt_co, |
|
high: None | _ArrayLikeInt_co = ..., |
|
size: None | _ShapeLike = ..., |
|
dtype: dtype[uint] | type[uint] | _UIntCodes | _SupportsDType[dtype[uint]] = ..., |
|
endpoint: bool = ..., |
|
) -> NDArray[uint]: ... |
|
|
|
@overload |
|
def choice( |
|
self, |
|
a: int, |
|
size: None = ..., |
|
replace: bool = ..., |
|
p: None | _ArrayLikeFloat_co = ..., |
|
axis: int = ..., |
|
shuffle: bool = ..., |
|
) -> int: ... |
|
@overload |
|
def choice( |
|
self, |
|
a: int, |
|
size: _ShapeLike = ..., |
|
replace: bool = ..., |
|
p: None | _ArrayLikeFloat_co = ..., |
|
axis: int = ..., |
|
shuffle: bool = ..., |
|
) -> NDArray[int64]: ... |
|
@overload |
|
def choice( |
|
self, |
|
a: ArrayLike, |
|
size: None = ..., |
|
replace: bool = ..., |
|
p: None | _ArrayLikeFloat_co = ..., |
|
axis: int = ..., |
|
shuffle: bool = ..., |
|
) -> Any: ... |
|
@overload |
|
def choice( |
|
self, |
|
a: ArrayLike, |
|
size: _ShapeLike = ..., |
|
replace: bool = ..., |
|
p: None | _ArrayLikeFloat_co = ..., |
|
axis: int = ..., |
|
shuffle: bool = ..., |
|
) -> NDArray[Any]: ... |
|
@overload |
|
def uniform( |
|
self, |
|
low: _FloatLike_co = ..., |
|
high: _FloatLike_co = ..., |
|
size: None = ..., |
|
) -> float: ... |
|
@overload |
|
def uniform( |
|
self, |
|
low: _ArrayLikeFloat_co = ..., |
|
high: _ArrayLikeFloat_co = ..., |
|
size: None | _ShapeLike = ..., |
|
) -> NDArray[float64]: ... |
|
@overload |
|
def normal( |
|
self, |
|
loc: _FloatLike_co = ..., |
|
scale: _FloatLike_co = ..., |
|
size: None = ..., |
|
) -> float: ... |
|
@overload |
|
def normal( |
|
self, |
|
loc: _ArrayLikeFloat_co = ..., |
|
scale: _ArrayLikeFloat_co = ..., |
|
size: None | _ShapeLike = ..., |
|
) -> NDArray[float64]: ... |
|
@overload |
|
def standard_gamma( |
|
self, |
|
shape: _FloatLike_co, |
|
size: None = ..., |
|
dtype: _DTypeLikeFloat32 | _DTypeLikeFloat64 = ..., |
|
out: None = ..., |
|
) -> float: ... |
|
@overload |
|
def standard_gamma( |
|
self, |
|
shape: _ArrayLikeFloat_co, |
|
size: None | _ShapeLike = ..., |
|
) -> NDArray[float64]: ... |
|
@overload |
|
def standard_gamma( |
|
self, |
|
shape: _ArrayLikeFloat_co, |
|
*, |
|
out: NDArray[float64] = ..., |
|
) -> NDArray[float64]: ... |
|
@overload |
|
def standard_gamma( |
|
self, |
|
shape: _ArrayLikeFloat_co, |
|
size: None | _ShapeLike = ..., |
|
dtype: _DTypeLikeFloat32 = ..., |
|
out: None | NDArray[float32] = ..., |
|
) -> NDArray[float32]: ... |
|
@overload |
|
def standard_gamma( |
|
self, |
|
shape: _ArrayLikeFloat_co, |
|
size: None | _ShapeLike = ..., |
|
dtype: _DTypeLikeFloat64 = ..., |
|
out: None | NDArray[float64] = ..., |
|
) -> NDArray[float64]: ... |
|
@overload |
|
def gamma(self, shape: _FloatLike_co, scale: _FloatLike_co = ..., size: None = ...) -> float: ... |
|
@overload |
|
def gamma( |
|
self, |
|
shape: _ArrayLikeFloat_co, |
|
scale: _ArrayLikeFloat_co = ..., |
|
size: None | _ShapeLike = ..., |
|
) -> NDArray[float64]: ... |
|
@overload |
|
def f(self, dfnum: _FloatLike_co, dfden: _FloatLike_co, size: None = ...) -> float: ... |
|
@overload |
|
def f( |
|
self, dfnum: _ArrayLikeFloat_co, dfden: _ArrayLikeFloat_co, size: None | _ShapeLike = ... |
|
) -> NDArray[float64]: ... |
|
@overload |
|
def noncentral_f(self, dfnum: _FloatLike_co, dfden: _FloatLike_co, nonc: _FloatLike_co, size: None = ...) -> float: ... |
|
@overload |
|
def noncentral_f( |
|
self, |
|
dfnum: _ArrayLikeFloat_co, |
|
dfden: _ArrayLikeFloat_co, |
|
nonc: _ArrayLikeFloat_co, |
|
size: None | _ShapeLike = ..., |
|
) -> NDArray[float64]: ... |
|
@overload |
|
def chisquare(self, df: _FloatLike_co, size: None = ...) -> float: ... |
|
@overload |
|
def chisquare( |
|
self, df: _ArrayLikeFloat_co, size: None | _ShapeLike = ... |
|
) -> NDArray[float64]: ... |
|
@overload |
|
def noncentral_chisquare(self, df: _FloatLike_co, nonc: _FloatLike_co, size: None = ...) -> float: ... |
|
@overload |
|
def noncentral_chisquare( |
|
self, df: _ArrayLikeFloat_co, nonc: _ArrayLikeFloat_co, size: None | _ShapeLike = ... |
|
) -> NDArray[float64]: ... |
|
@overload |
|
def standard_t(self, df: _FloatLike_co, size: None = ...) -> float: ... |
|
@overload |
|
def standard_t( |
|
self, df: _ArrayLikeFloat_co, size: None = ... |
|
) -> NDArray[float64]: ... |
|
@overload |
|
def standard_t( |
|
self, df: _ArrayLikeFloat_co, size: _ShapeLike = ... |
|
) -> NDArray[float64]: ... |
|
@overload |
|
def vonmises(self, mu: _FloatLike_co, kappa: _FloatLike_co, size: None = ...) -> float: ... |
|
@overload |
|
def vonmises( |
|
self, mu: _ArrayLikeFloat_co, kappa: _ArrayLikeFloat_co, size: None | _ShapeLike = ... |
|
) -> NDArray[float64]: ... |
|
@overload |
|
def pareto(self, a: _FloatLike_co, size: None = ...) -> float: ... |
|
@overload |
|
def pareto( |
|
self, a: _ArrayLikeFloat_co, size: None | _ShapeLike = ... |
|
) -> NDArray[float64]: ... |
|
@overload |
|
def weibull(self, a: _FloatLike_co, size: None = ...) -> float: ... |
|
@overload |
|
def weibull( |
|
self, a: _ArrayLikeFloat_co, size: None | _ShapeLike = ... |
|
) -> NDArray[float64]: ... |
|
@overload |
|
def power(self, a: _FloatLike_co, size: None = ...) -> float: ... |
|
@overload |
|
def power( |
|
self, a: _ArrayLikeFloat_co, size: None | _ShapeLike = ... |
|
) -> NDArray[float64]: ... |
|
@overload |
|
def standard_cauchy(self, size: None = ...) -> float: ... |
|
@overload |
|
def standard_cauchy(self, size: _ShapeLike = ...) -> NDArray[float64]: ... |
|
@overload |
|
def laplace( |
|
self, |
|
loc: _FloatLike_co = ..., |
|
scale: _FloatLike_co = ..., |
|
size: None = ..., |
|
) -> float: ... |
|
@overload |
|
def laplace( |
|
self, |
|
loc: _ArrayLikeFloat_co = ..., |
|
scale: _ArrayLikeFloat_co = ..., |
|
size: None | _ShapeLike = ..., |
|
) -> NDArray[float64]: ... |
|
@overload |
|
def gumbel( |
|
self, |
|
loc: _FloatLike_co = ..., |
|
scale: _FloatLike_co = ..., |
|
size: None = ..., |
|
) -> float: ... |
|
@overload |
|
def gumbel( |
|
self, |
|
loc: _ArrayLikeFloat_co = ..., |
|
scale: _ArrayLikeFloat_co = ..., |
|
size: None | _ShapeLike = ..., |
|
) -> NDArray[float64]: ... |
|
@overload |
|
def logistic( |
|
self, |
|
loc: _FloatLike_co = ..., |
|
scale: _FloatLike_co = ..., |
|
size: None = ..., |
|
) -> float: ... |
|
@overload |
|
def logistic( |
|
self, |
|
loc: _ArrayLikeFloat_co = ..., |
|
scale: _ArrayLikeFloat_co = ..., |
|
size: None | _ShapeLike = ..., |
|
) -> NDArray[float64]: ... |
|
@overload |
|
def lognormal( |
|
self, |
|
mean: _FloatLike_co = ..., |
|
sigma: _FloatLike_co = ..., |
|
size: None = ..., |
|
) -> float: ... |
|
@overload |
|
def lognormal( |
|
self, |
|
mean: _ArrayLikeFloat_co = ..., |
|
sigma: _ArrayLikeFloat_co = ..., |
|
size: None | _ShapeLike = ..., |
|
) -> NDArray[float64]: ... |
|
@overload |
|
def rayleigh(self, scale: _FloatLike_co = ..., size: None = ...) -> float: ... |
|
@overload |
|
def rayleigh( |
|
self, scale: _ArrayLikeFloat_co = ..., size: None | _ShapeLike = ... |
|
) -> NDArray[float64]: ... |
|
@overload |
|
def wald(self, mean: _FloatLike_co, scale: _FloatLike_co, size: None = ...) -> float: ... |
|
@overload |
|
def wald( |
|
self, mean: _ArrayLikeFloat_co, scale: _ArrayLikeFloat_co, size: None | _ShapeLike = ... |
|
) -> NDArray[float64]: ... |
|
@overload |
|
def triangular( |
|
self, |
|
left: _FloatLike_co, |
|
mode: _FloatLike_co, |
|
right: _FloatLike_co, |
|
size: None = ..., |
|
) -> float: ... |
|
@overload |
|
def triangular( |
|
self, |
|
left: _ArrayLikeFloat_co, |
|
mode: _ArrayLikeFloat_co, |
|
right: _ArrayLikeFloat_co, |
|
size: None | _ShapeLike = ..., |
|
) -> NDArray[float64]: ... |
|
@overload |
|
def binomial(self, n: int, p: _FloatLike_co, size: None = ...) -> int: ... |
|
@overload |
|
def binomial( |
|
self, n: _ArrayLikeInt_co, p: _ArrayLikeFloat_co, size: None | _ShapeLike = ... |
|
) -> NDArray[int64]: ... |
|
@overload |
|
def negative_binomial(self, n: _FloatLike_co, p: _FloatLike_co, size: None = ...) -> int: ... |
|
@overload |
|
def negative_binomial( |
|
self, n: _ArrayLikeFloat_co, p: _ArrayLikeFloat_co, size: None | _ShapeLike = ... |
|
) -> NDArray[int64]: ... |
|
@overload |
|
def poisson(self, lam: _FloatLike_co = ..., size: None = ...) -> int: ... |
|
@overload |
|
def poisson( |
|
self, lam: _ArrayLikeFloat_co = ..., size: None | _ShapeLike = ... |
|
) -> NDArray[int64]: ... |
|
@overload |
|
def zipf(self, a: _FloatLike_co, size: None = ...) -> int: ... |
|
@overload |
|
def zipf( |
|
self, a: _ArrayLikeFloat_co, size: None | _ShapeLike = ... |
|
) -> NDArray[int64]: ... |
|
@overload |
|
def geometric(self, p: _FloatLike_co, size: None = ...) -> int: ... |
|
@overload |
|
def geometric( |
|
self, p: _ArrayLikeFloat_co, size: None | _ShapeLike = ... |
|
) -> NDArray[int64]: ... |
|
@overload |
|
def hypergeometric(self, ngood: int, nbad: int, nsample: int, size: None = ...) -> int: ... |
|
@overload |
|
def hypergeometric( |
|
self, |
|
ngood: _ArrayLikeInt_co, |
|
nbad: _ArrayLikeInt_co, |
|
nsample: _ArrayLikeInt_co, |
|
size: None | _ShapeLike = ..., |
|
) -> NDArray[int64]: ... |
|
@overload |
|
def logseries(self, p: _FloatLike_co, size: None = ...) -> int: ... |
|
@overload |
|
def logseries( |
|
self, p: _ArrayLikeFloat_co, size: None | _ShapeLike = ... |
|
) -> NDArray[int64]: ... |
|
def multivariate_normal( |
|
self, |
|
mean: _ArrayLikeFloat_co, |
|
cov: _ArrayLikeFloat_co, |
|
size: None | _ShapeLike = ..., |
|
check_valid: Literal["warn", "raise", "ignore"] = ..., |
|
tol: float = ..., |
|
*, |
|
method: Literal["svd", "eigh", "cholesky"] = ..., |
|
) -> NDArray[float64]: ... |
|
def multinomial( |
|
self, n: _ArrayLikeInt_co, |
|
pvals: _ArrayLikeFloat_co, |
|
size: None | _ShapeLike = ... |
|
) -> NDArray[int64]: ... |
|
def multivariate_hypergeometric( |
|
self, |
|
colors: _ArrayLikeInt_co, |
|
nsample: int, |
|
size: None | _ShapeLike = ..., |
|
method: Literal["marginals", "count"] = ..., |
|
) -> NDArray[int64]: ... |
|
def dirichlet( |
|
self, alpha: _ArrayLikeFloat_co, size: None | _ShapeLike = ... |
|
) -> NDArray[float64]: ... |
|
def permuted( |
|
self, x: ArrayLike, *, axis: None | int = ..., out: None | NDArray[Any] = ... |
|
) -> NDArray[Any]: ... |
|
def shuffle(self, x: ArrayLike, axis: int = ...) -> None: ... |
|
|
|
def default_rng( |
|
seed: None | _ArrayLikeInt_co | SeedSequence | BitGenerator | Generator = ... |
|
) -> Generator: ... |
|
|