|
from typing import ( |
|
Any, |
|
Hashable, |
|
Literal, |
|
) |
|
|
|
import numpy as np |
|
|
|
from pandas._typing import npt |
|
|
|
def unique_label_indices( |
|
labels: np.ndarray, |
|
) -> np.ndarray: ... |
|
|
|
class Factorizer: |
|
count: int |
|
uniques: Any |
|
def __init__(self, size_hint: int) -> None: ... |
|
def get_count(self) -> int: ... |
|
def factorize( |
|
self, |
|
values: np.ndarray, |
|
na_sentinel=..., |
|
na_value=..., |
|
mask=..., |
|
) -> npt.NDArray[np.intp]: ... |
|
|
|
class ObjectFactorizer(Factorizer): |
|
table: PyObjectHashTable |
|
uniques: ObjectVector |
|
|
|
class Int64Factorizer(Factorizer): |
|
table: Int64HashTable |
|
uniques: Int64Vector |
|
|
|
class UInt64Factorizer(Factorizer): |
|
table: UInt64HashTable |
|
uniques: UInt64Vector |
|
|
|
class Int32Factorizer(Factorizer): |
|
table: Int32HashTable |
|
uniques: Int32Vector |
|
|
|
class UInt32Factorizer(Factorizer): |
|
table: UInt32HashTable |
|
uniques: UInt32Vector |
|
|
|
class Int16Factorizer(Factorizer): |
|
table: Int16HashTable |
|
uniques: Int16Vector |
|
|
|
class UInt16Factorizer(Factorizer): |
|
table: UInt16HashTable |
|
uniques: UInt16Vector |
|
|
|
class Int8Factorizer(Factorizer): |
|
table: Int8HashTable |
|
uniques: Int8Vector |
|
|
|
class UInt8Factorizer(Factorizer): |
|
table: UInt8HashTable |
|
uniques: UInt8Vector |
|
|
|
class Float64Factorizer(Factorizer): |
|
table: Float64HashTable |
|
uniques: Float64Vector |
|
|
|
class Float32Factorizer(Factorizer): |
|
table: Float32HashTable |
|
uniques: Float32Vector |
|
|
|
class Complex64Factorizer(Factorizer): |
|
table: Complex64HashTable |
|
uniques: Complex64Vector |
|
|
|
class Complex128Factorizer(Factorizer): |
|
table: Complex128HashTable |
|
uniques: Complex128Vector |
|
|
|
class Int64Vector: |
|
def __init__(self, *args) -> None: ... |
|
def __len__(self) -> int: ... |
|
def to_array(self) -> npt.NDArray[np.int64]: ... |
|
|
|
class Int32Vector: |
|
def __init__(self, *args) -> None: ... |
|
def __len__(self) -> int: ... |
|
def to_array(self) -> npt.NDArray[np.int32]: ... |
|
|
|
class Int16Vector: |
|
def __init__(self, *args) -> None: ... |
|
def __len__(self) -> int: ... |
|
def to_array(self) -> npt.NDArray[np.int16]: ... |
|
|
|
class Int8Vector: |
|
def __init__(self, *args) -> None: ... |
|
def __len__(self) -> int: ... |
|
def to_array(self) -> npt.NDArray[np.int8]: ... |
|
|
|
class UInt64Vector: |
|
def __init__(self, *args) -> None: ... |
|
def __len__(self) -> int: ... |
|
def to_array(self) -> npt.NDArray[np.uint64]: ... |
|
|
|
class UInt32Vector: |
|
def __init__(self, *args) -> None: ... |
|
def __len__(self) -> int: ... |
|
def to_array(self) -> npt.NDArray[np.uint32]: ... |
|
|
|
class UInt16Vector: |
|
def __init__(self, *args) -> None: ... |
|
def __len__(self) -> int: ... |
|
def to_array(self) -> npt.NDArray[np.uint16]: ... |
|
|
|
class UInt8Vector: |
|
def __init__(self, *args) -> None: ... |
|
def __len__(self) -> int: ... |
|
def to_array(self) -> npt.NDArray[np.uint8]: ... |
|
|
|
class Float64Vector: |
|
def __init__(self, *args) -> None: ... |
|
def __len__(self) -> int: ... |
|
def to_array(self) -> npt.NDArray[np.float64]: ... |
|
|
|
class Float32Vector: |
|
def __init__(self, *args) -> None: ... |
|
def __len__(self) -> int: ... |
|
def to_array(self) -> npt.NDArray[np.float32]: ... |
|
|
|
class Complex128Vector: |
|
def __init__(self, *args) -> None: ... |
|
def __len__(self) -> int: ... |
|
def to_array(self) -> npt.NDArray[np.complex128]: ... |
|
|
|
class Complex64Vector: |
|
def __init__(self, *args) -> None: ... |
|
def __len__(self) -> int: ... |
|
def to_array(self) -> npt.NDArray[np.complex64]: ... |
|
|
|
class StringVector: |
|
def __init__(self, *args) -> None: ... |
|
def __len__(self) -> int: ... |
|
def to_array(self) -> npt.NDArray[np.object_]: ... |
|
|
|
class ObjectVector: |
|
def __init__(self, *args) -> None: ... |
|
def __len__(self) -> int: ... |
|
def to_array(self) -> npt.NDArray[np.object_]: ... |
|
|
|
class HashTable: |
|
|
|
|
|
|
|
def __init__(self, size_hint: int = ..., uses_mask: bool = ...) -> None: ... |
|
def __len__(self) -> int: ... |
|
def __contains__(self, key: Hashable) -> bool: ... |
|
def sizeof(self, deep: bool = ...) -> int: ... |
|
def get_state(self) -> dict[str, int]: ... |
|
|
|
def get_item(self, val): ... |
|
def set_item(self, key, val) -> None: ... |
|
def get_na(self): ... |
|
def set_na(self, val) -> None: ... |
|
def map_locations( |
|
self, |
|
values: np.ndarray, |
|
mask: npt.NDArray[np.bool_] | None = ..., |
|
) -> None: ... |
|
def lookup( |
|
self, |
|
values: np.ndarray, |
|
mask: npt.NDArray[np.bool_] | None = ..., |
|
) -> npt.NDArray[np.intp]: ... |
|
def get_labels( |
|
self, |
|
values: np.ndarray, |
|
uniques, |
|
count_prior: int = ..., |
|
na_sentinel: int = ..., |
|
na_value: object = ..., |
|
mask=..., |
|
) -> npt.NDArray[np.intp]: ... |
|
def unique( |
|
self, |
|
values: np.ndarray, |
|
return_inverse: bool = ..., |
|
mask=..., |
|
) -> ( |
|
tuple[ |
|
np.ndarray, |
|
npt.NDArray[np.intp], |
|
] |
|
| np.ndarray |
|
): ... |
|
def factorize( |
|
self, |
|
values: np.ndarray, |
|
na_sentinel: int = ..., |
|
na_value: object = ..., |
|
mask=..., |
|
ignore_na: bool = True, |
|
) -> tuple[np.ndarray, npt.NDArray[np.intp]]: ... |
|
|
|
class Complex128HashTable(HashTable): ... |
|
class Complex64HashTable(HashTable): ... |
|
class Float64HashTable(HashTable): ... |
|
class Float32HashTable(HashTable): ... |
|
|
|
class Int64HashTable(HashTable): |
|
|
|
def get_labels_groupby( |
|
self, |
|
values: npt.NDArray[np.int64], |
|
) -> tuple[npt.NDArray[np.intp], npt.NDArray[np.int64]]: ... |
|
def map_keys_to_values( |
|
self, |
|
keys: npt.NDArray[np.int64], |
|
values: npt.NDArray[np.int64], |
|
) -> None: ... |
|
|
|
class Int32HashTable(HashTable): ... |
|
class Int16HashTable(HashTable): ... |
|
class Int8HashTable(HashTable): ... |
|
class UInt64HashTable(HashTable): ... |
|
class UInt32HashTable(HashTable): ... |
|
class UInt16HashTable(HashTable): ... |
|
class UInt8HashTable(HashTable): ... |
|
class StringHashTable(HashTable): ... |
|
class PyObjectHashTable(HashTable): ... |
|
class IntpHashTable(HashTable): ... |
|
|
|
def duplicated( |
|
values: np.ndarray, |
|
keep: Literal["last", "first", False] = ..., |
|
mask: npt.NDArray[np.bool_] | None = ..., |
|
) -> npt.NDArray[np.bool_]: ... |
|
def mode( |
|
values: np.ndarray, dropna: bool, mask: npt.NDArray[np.bool_] | None = ... |
|
) -> np.ndarray: ... |
|
def value_count( |
|
values: np.ndarray, |
|
dropna: bool, |
|
mask: npt.NDArray[np.bool_] | None = ..., |
|
) -> tuple[np.ndarray, npt.NDArray[np.int64], int]: ... |
|
|
|
|
|
def ismember( |
|
arr: np.ndarray, |
|
values: np.ndarray, |
|
) -> npt.NDArray[np.bool_]: ... |
|
def object_hash(obj) -> int: ... |
|
def objects_are_equal(a, b) -> bool: ... |
|
|