|
|
|
|
|
from decimal import Decimal |
|
from typing import ( |
|
Any, |
|
Callable, |
|
Final, |
|
Generator, |
|
Hashable, |
|
Literal, |
|
TypeAlias, |
|
overload, |
|
) |
|
|
|
import numpy as np |
|
|
|
from pandas._libs.interval import Interval |
|
from pandas._libs.tslibs import Period |
|
from pandas._typing import ( |
|
ArrayLike, |
|
DtypeObj, |
|
TypeGuard, |
|
npt, |
|
) |
|
|
|
|
|
ndarray_obj_2d = np.ndarray |
|
|
|
from enum import Enum |
|
|
|
class _NoDefault(Enum): |
|
no_default = ... |
|
|
|
no_default: Final = _NoDefault.no_default |
|
NoDefault: TypeAlias = Literal[_NoDefault.no_default] |
|
|
|
i8max: int |
|
u8max: int |
|
|
|
def is_np_dtype(dtype: object, kinds: str | None = ...) -> TypeGuard[np.dtype]: ... |
|
def item_from_zerodim(val: object) -> object: ... |
|
def infer_dtype(value: object, skipna: bool = ...) -> str: ... |
|
def is_iterator(obj: object) -> bool: ... |
|
def is_scalar(val: object) -> bool: ... |
|
def is_list_like(obj: object, allow_sets: bool = ...) -> bool: ... |
|
def is_pyarrow_array(obj: object) -> bool: ... |
|
def is_period(val: object) -> TypeGuard[Period]: ... |
|
def is_interval(obj: object) -> TypeGuard[Interval]: ... |
|
def is_decimal(obj: object) -> TypeGuard[Decimal]: ... |
|
def is_complex(obj: object) -> TypeGuard[complex]: ... |
|
def is_bool(obj: object) -> TypeGuard[bool | np.bool_]: ... |
|
def is_integer(obj: object) -> TypeGuard[int | np.integer]: ... |
|
def is_int_or_none(obj) -> bool: ... |
|
def is_float(obj: object) -> TypeGuard[float]: ... |
|
def is_interval_array(values: np.ndarray) -> bool: ... |
|
def is_datetime64_array(values: np.ndarray, skipna: bool = True) -> bool: ... |
|
def is_timedelta_or_timedelta64_array( |
|
values: np.ndarray, skipna: bool = True |
|
) -> bool: ... |
|
def is_datetime_with_singletz_array(values: np.ndarray) -> bool: ... |
|
def is_time_array(values: np.ndarray, skipna: bool = ...): ... |
|
def is_date_array(values: np.ndarray, skipna: bool = ...): ... |
|
def is_datetime_array(values: np.ndarray, skipna: bool = ...): ... |
|
def is_string_array(values: np.ndarray, skipna: bool = ...): ... |
|
def is_float_array(values: np.ndarray): ... |
|
def is_integer_array(values: np.ndarray, skipna: bool = ...): ... |
|
def is_bool_array(values: np.ndarray, skipna: bool = ...): ... |
|
def fast_multiget( |
|
mapping: dict, |
|
keys: np.ndarray, |
|
default=..., |
|
) -> np.ndarray: ... |
|
def fast_unique_multiple_list_gen(gen: Generator, sort: bool = ...) -> list: ... |
|
def fast_unique_multiple_list(lists: list, sort: bool | None = ...) -> list: ... |
|
def map_infer( |
|
arr: np.ndarray, |
|
f: Callable[[Any], Any], |
|
convert: bool = ..., |
|
ignore_na: bool = ..., |
|
) -> np.ndarray: ... |
|
@overload |
|
def maybe_convert_objects( |
|
objects: npt.NDArray[np.object_], |
|
*, |
|
try_float: bool = ..., |
|
safe: bool = ..., |
|
convert_numeric: bool = ..., |
|
convert_non_numeric: Literal[False] = ..., |
|
convert_to_nullable_dtype: Literal[False] = ..., |
|
dtype_if_all_nat: DtypeObj | None = ..., |
|
) -> npt.NDArray[np.object_ | np.number]: ... |
|
@overload |
|
def maybe_convert_objects( |
|
objects: npt.NDArray[np.object_], |
|
*, |
|
try_float: bool = ..., |
|
safe: bool = ..., |
|
convert_numeric: bool = ..., |
|
convert_non_numeric: bool = ..., |
|
convert_to_nullable_dtype: Literal[True] = ..., |
|
dtype_if_all_nat: DtypeObj | None = ..., |
|
) -> ArrayLike: ... |
|
@overload |
|
def maybe_convert_objects( |
|
objects: npt.NDArray[np.object_], |
|
*, |
|
try_float: bool = ..., |
|
safe: bool = ..., |
|
convert_numeric: bool = ..., |
|
convert_non_numeric: bool = ..., |
|
convert_to_nullable_dtype: bool = ..., |
|
dtype_if_all_nat: DtypeObj | None = ..., |
|
) -> ArrayLike: ... |
|
@overload |
|
def maybe_convert_numeric( |
|
values: npt.NDArray[np.object_], |
|
na_values: set, |
|
convert_empty: bool = ..., |
|
coerce_numeric: bool = ..., |
|
convert_to_masked_nullable: Literal[False] = ..., |
|
) -> tuple[np.ndarray, None]: ... |
|
@overload |
|
def maybe_convert_numeric( |
|
values: npt.NDArray[np.object_], |
|
na_values: set, |
|
convert_empty: bool = ..., |
|
coerce_numeric: bool = ..., |
|
*, |
|
convert_to_masked_nullable: Literal[True], |
|
) -> tuple[np.ndarray, np.ndarray]: ... |
|
|
|
|
|
def ensure_string_array( |
|
arr, |
|
na_value: object = ..., |
|
convert_na_value: bool = ..., |
|
copy: bool = ..., |
|
skipna: bool = ..., |
|
) -> npt.NDArray[np.object_]: ... |
|
def convert_nans_to_NA( |
|
arr: npt.NDArray[np.object_], |
|
) -> npt.NDArray[np.object_]: ... |
|
def fast_zip(ndarrays: list) -> npt.NDArray[np.object_]: ... |
|
|
|
|
|
def to_object_array_tuples(rows: object) -> ndarray_obj_2d: ... |
|
def tuples_to_object_array( |
|
tuples: npt.NDArray[np.object_], |
|
) -> ndarray_obj_2d: ... |
|
|
|
|
|
def to_object_array(rows: object, min_width: int = ...) -> ndarray_obj_2d: ... |
|
def dicts_to_array(dicts: list, columns: list) -> ndarray_obj_2d: ... |
|
def maybe_booleans_to_slice( |
|
mask: npt.NDArray[np.uint8], |
|
) -> slice | npt.NDArray[np.uint8]: ... |
|
def maybe_indices_to_slice( |
|
indices: npt.NDArray[np.intp], |
|
max_len: int, |
|
) -> slice | npt.NDArray[np.intp]: ... |
|
def is_all_arraylike(obj: list) -> bool: ... |
|
|
|
|
|
|
|
|
|
def memory_usage_of_objects(arr: np.ndarray) -> int: ... |
|
def map_infer_mask( |
|
arr: np.ndarray, |
|
f: Callable[[Any], Any], |
|
mask: np.ndarray, |
|
convert: bool = ..., |
|
na_value: Any = ..., |
|
dtype: np.dtype = ..., |
|
) -> np.ndarray: ... |
|
def indices_fast( |
|
index: npt.NDArray[np.intp], |
|
labels: np.ndarray, |
|
keys: list, |
|
sorted_labels: list[npt.NDArray[np.int64]], |
|
) -> dict[Hashable, npt.NDArray[np.intp]]: ... |
|
def generate_slices( |
|
labels: np.ndarray, ngroups: int |
|
) -> tuple[npt.NDArray[np.int64], npt.NDArray[np.int64]]: ... |
|
def count_level_2d( |
|
mask: np.ndarray, |
|
labels: np.ndarray, |
|
max_bin: int, |
|
) -> np.ndarray: ... |
|
def get_level_sorter( |
|
codes: np.ndarray, |
|
starts: np.ndarray, |
|
) -> np.ndarray: ... |
|
def generate_bins_dt64( |
|
values: npt.NDArray[np.int64], |
|
binner: np.ndarray, |
|
closed: object = ..., |
|
hasnans: bool = ..., |
|
) -> np.ndarray: ... |
|
def array_equivalent_object( |
|
left: npt.NDArray[np.object_], |
|
right: npt.NDArray[np.object_], |
|
) -> bool: ... |
|
def has_infs(arr: np.ndarray) -> bool: ... |
|
def has_only_ints_or_nan(arr: np.ndarray) -> bool: ... |
|
def get_reverse_indexer( |
|
indexer: np.ndarray, |
|
length: int, |
|
) -> npt.NDArray[np.intp]: ... |
|
def is_bool_list(obj: list) -> bool: ... |
|
def dtypes_all_equal(types: list[DtypeObj]) -> bool: ... |
|
def is_range_indexer( |
|
left: np.ndarray, n: int |
|
) -> bool: ... |
|
|