File size: 28,842 Bytes
252711e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 |
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import logging
import os
from copy import deepcopy
import torch
import torch.nn as nn
from accelerate import PartialState
from huggingface_hub import hf_hub_download
from huggingface_hub.utils import (
EntryNotFoundError,
HFValidationError,
LocalEntryNotFoundError,
RepositoryNotFoundError,
)
from safetensors.torch import load_file as safe_load_file
from transformers import PreTrainedModel
from ..import_utils import is_npu_available, is_peft_available, is_transformers_greater_than, is_xpu_available
if is_peft_available():
from peft import (
PeftConfig,
PeftModel,
PeftModelForCausalLM,
PeftModelForSeq2SeqLM,
PromptLearningConfig,
get_peft_model,
prepare_model_for_kbit_training,
)
if is_transformers_greater_than("4.33.0"):
from transformers.integrations.deepspeed import is_deepspeed_zero3_enabled
else:
from transformers.deepspeed import is_deepspeed_zero3_enabled
LAYER_PATTERNS = [
"transformer.h.{layer}",
"model.decoder.layers.{layer}",
"gpt_neox.layers.{layer}",
"model.layers.{layer}",
]
class PreTrainedModelWrapper(nn.Module):
r"""
A wrapper class around a (`transformers.PreTrainedModel`) to be compatible with the
(`~transformers.PreTrained`) class in order to keep some attributes and methods of the
(`~transformers.PreTrainedModel`) class.
Attributes:
pretrained_model: (`transformers.PreTrainedModel`)
The model to be wrapped.
parent_class: (`transformers.PreTrainedModel`)
The parent class of the model to be wrapped.
supported_args: (`list`)
The list of arguments that are supported by the wrapper class.
"""
transformers_parent_class = None
supported_args = None
supported_modules = ("v_head",)
supported_rm_modules = ("score",)
supported_pretrained_model_architectures = (PreTrainedModel) if not is_peft_available() else (PreTrainedModel, PeftModelForCausalLM, PeftModelForSeq2SeqLM)
def __init__(self, pretrained_model=None, score_module=None, supports_rm_adapter=False, rm_adapter_name=None, **kwargs):
super().__init__()
self.pretrained_model = pretrained_model
self.config = pretrained_model.config
self.prepare_inputs_for_generation = pretrained_model.prepare_inputs_for_generation
self.is_loaded_in_8bit = getattr(pretrained_model, "is_loaded_in_8bit", False)
self.is_loaded_in_4bit = getattr(pretrained_model, "is_loaded_in_4bit", False)
self.is_sequential_parallel = False
if hasattr(pretrained_model, "gradient_checkpointing_disable"):
self.gradient_checkpointing_disable = pretrained_model.gradient_checkpointing_disable
if hasattr(pretrained_model, "gradient_checkpointing_enable"):
self.gradient_checkpointing_enable = pretrained_model.gradient_checkpointing_enable
self.supports_rm_adapter = supports_rm_adapter
self.rm_adapter_name = rm_adapter_name
self.policy_adapter_name = "default"
if score_module is not None:
self.score = score_module
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
r"""
Instantiates a new model from a pretrained model from `transformers`. The
pretrained model is loaded using the `from_pretrained` method of the
`transformers.PreTrainedModel` class. The arguments that are specific to the
`transformers.PreTrainedModel` class are passed along this method and filtered
out from the `kwargs` argument.
Args:
pretrained_model_name_or_path (`str` or `transformers.PreTrainedModel`):
The path to the pretrained model or its name.
*model_args (`list`, *optional*)):
Additional positional arguments passed along to the underlying model's
`from_pretrained` method.
**kwargs (`dict`, *optional*):
Additional keyword arguments passed along to the underlying model's
`from_pretrained` method. We also pre-process the kwargs to extract
the arguments that are specific to the `transformers.PreTrainedModel`
class and the arguments that are specific to trl models. The kwargs
also support `prepare_model_for_kbit_training` arguments from
`peft` library.
"""
if kwargs is not None:
peft_config = kwargs.pop("peft_config", None)
reward_adapter = kwargs.pop("reward_adapter", None)
reward_adapter_name = kwargs.pop("reward_adapter_name", "reward_adapter")
is_trainable = kwargs.pop("is_trainable", False)
trl_model_args, pretrained_kwargs, peft_quantization_kwargs = cls._split_kwargs(kwargs)
token = pretrained_kwargs.get("token", None)
else:
peft_config = None
is_trainable = False
trl_model_args = {}
pretrained_kwargs = {}
peft_quantization_kwargs = {}
token = None
if reward_adapter is not None and not isinstance(reward_adapter, str):
raise ValueError("The `reward_adapter` argument should be a string representing the name of local path or the Hub id to the Reward Modeling adapter.")
is_peft_model = False
current_device = cls._get_current_device()
if isinstance(pretrained_model_name_or_path, str):
is_loaded_in_8bit = pretrained_kwargs["load_in_8bit"] if "load_in_8bit" in pretrained_kwargs else False
is_loaded_in_4bit = pretrained_kwargs["load_in_4bit"] if "load_in_4bit" in pretrained_kwargs else False
else:
is_loaded_in_8bit = getattr(pretrained_model_name_or_path, "is_loaded_in_8bit", False)
is_loaded_in_4bit = getattr(pretrained_model_name_or_path, "is_loaded_in_4bit", False)
if (is_loaded_in_8bit or is_loaded_in_4bit) and "device_map" not in pretrained_kwargs:
# warn users
logging.warning(
"The `device_map` argument is not provided. We will override the device_map argument."
" to set the entire"
" model on the current device. If you want to set the model on multiple devices, please provide"
" a custom `device_map` argument."
)
pretrained_kwargs["device_map"] = {"": current_device}
if is_peft_available() and peft_config is not None and not isinstance(peft_config, PeftConfig):
raise ValueError("The `peft_config` argument should be an instance of `peft.PeftConfig` class.")
# First, load the pre-trained model using the parent-class
# either `AutoModelForCausalLM` or `AutoModelForSeq2SeqLM`
if isinstance(pretrained_model_name_or_path, str):
if is_peft_available():
try:
# If there is a trained peft adapter in the hub, load its config.
remote_adapter_config = hf_hub_download(
pretrained_model_name_or_path,
"adapter_config.json",
token=token,
)
except (EntryNotFoundError, LocalEntryNotFoundError, HFValidationError, RepositoryNotFoundError):
remote_adapter_config = None
else:
remote_adapter_config = None
local_adapter_present = os.path.exists(os.path.join(pretrained_model_name_or_path, "adapter_config.json"))
if (local_adapter_present or remote_adapter_config is not None) and is_peft_available():
if peft_config is not None:
logging.warning("`peft_config` argument ignored since a peft config file was found in " f"{pretrained_model_name_or_path}")
# Load the trained peft adapter config
if local_adapter_present:
trained_adapter_config = PeftConfig.from_pretrained(pretrained_model_name_or_path)
else:
remote_adapter_dir = os.path.dirname(remote_adapter_config)
trained_adapter_config = PeftConfig.from_pretrained(remote_adapter_dir)
# Load the pretrained base model
pretrained_model = cls.transformers_parent_class.from_pretrained(trained_adapter_config.base_model_name_or_path, *model_args, **pretrained_kwargs)
# Wrap the pretrained model with the trained peft adapter
pretrained_model = PeftModel.from_pretrained(pretrained_model, pretrained_model_name_or_path, is_trainable=is_trainable)
logging.info("Trained peft adapter loaded")
else:
pretrained_model = cls.transformers_parent_class.from_pretrained(pretrained_model_name_or_path, *model_args, **pretrained_kwargs)
if peft_config is not None:
# Initialize a new peft adapter with the given config
if is_loaded_in_8bit or is_loaded_in_4bit:
pretrained_model = prepare_model_for_kbit_training(
pretrained_model,
**peft_quantization_kwargs,
)
pretrained_model = get_peft_model(pretrained_model, peft_config)
logging.info("peft adapter initialised")
elif isinstance(pretrained_model_name_or_path, cls.supported_pretrained_model_architectures):
pretrained_model = pretrained_model_name_or_path
if peft_config is not None and isinstance(pretrained_model, PreTrainedModel):
# Initialize a new peft adapter with the given config
if is_loaded_in_8bit or is_loaded_in_4bit:
pretrained_model = prepare_model_for_kbit_training(
pretrained_model,
**peft_quantization_kwargs,
)
pretrained_model = get_peft_model(pretrained_model, peft_config)
logging.info("peft adapter initialised")
else:
raise ValueError("pretrained_model_name_or_path should be a string or a PreTrainedModel, " f"but is {type(pretrained_model_name_or_path)}")
if is_peft_available():
if isinstance(pretrained_model, PeftModel):
is_peft_model = True
# for backward compatibility
if hasattr(pretrained_model, "active_peft_config") and isinstance(pretrained_model.active_peft_config, PromptLearningConfig):
raise ValueError("PromptLearningConfig is not supported for PPO training.")
# Add reward modeling adapter if specified
if not is_peft_model and reward_adapter is not None:
raise ValueError("reward_adapter can only be used with a PeftModel. ")
elif is_peft_model and reward_adapter is not None:
score_module = cls.add_and_load_reward_modeling_adapter(pretrained_model, reward_adapter, reward_adapter_name, token=token)
multi_adapter_args = {
"score_module": score_module,
"supports_rm_adapter": True,
"rm_adapter_name": reward_adapter_name,
}
else:
multi_adapter_args = {"supports_rm_adapter": False}
# Then, create the full model by instantiating the wrapper class
model = cls(pretrained_model, **multi_adapter_args, **trl_model_args)
# if resume_training, load the state_dict again - this is ok since the
# state_dict is removed from the model after loading it.
is_resuming_training = True
if isinstance(pretrained_model_name_or_path, str):
safe_filename = os.path.join(pretrained_model_name_or_path, "model.safetensors")
filename = os.path.join(pretrained_model_name_or_path, "pytorch_model.bin")
sharded_index_filename = os.path.join(pretrained_model_name_or_path, "pytorch_model.bin.index.json")
safe_sharded_index_filename = os.path.join(pretrained_model_name_or_path, "model.safetensors.index.json")
is_sharded = False
use_safe = os.path.exists(safe_filename)
if not (os.path.exists(filename) or os.path.exists(safe_filename)):
# Try with `pytorch_model.bin`
filename, files_to_download, is_sharded, is_resuming_training = cls._get_checkpoint_from_hub(
pretrained_model,
pretrained_model_name_or_path,
sharded_index_filename,
token=token,
)
# Try with safetensors
if filename is None and files_to_download is None:
safe_filename, files_to_download, is_sharded, is_resuming_training = cls._get_checkpoint_from_hub(
pretrained_model,
pretrained_model_name_or_path,
safe_sharded_index_filename,
token=token,
model_name="model.safetensors",
model_index_name="model.safetensors.index.json",
)
use_safe = True
else:
use_safe = False
loading_func = safe_load_file if use_safe else torch.load
load_kwargs = {} if use_safe else {"map_location": "cpu"}
if is_resuming_training:
if is_sharded:
# download each file and add it to the state_dict
state_dict = {}
for shard_file in files_to_download:
filename = hf_hub_download(
pretrained_model_name_or_path,
shard_file,
token=token,
)
state_dict.update(loading_func(filename, **load_kwargs))
else:
state_dict = loading_func(filename if not use_safe else safe_filename, **load_kwargs)
else:
state_dict = pretrained_model_name_or_path.state_dict()
model.is_peft_model = is_peft_model
model.current_device = current_device
if is_resuming_training:
model.post_init(state_dict=state_dict)
return model
@classmethod
def _get_checkpoint_from_hub(
cls,
pretrained_model,
pretrained_model_name_or_path,
index_filename,
token=None,
model_name="pytorch_model.bin",
model_index_name="pytorch_model.bin.index.json",
):
files_to_download = None
filename = None
is_resuming_training = True
is_sharded = False
try:
filename = hf_hub_download(
pretrained_model_name_or_path,
model_name,
token=token,
)
# sharded
except (EntryNotFoundError, LocalEntryNotFoundError, HFValidationError, RepositoryNotFoundError):
if os.path.exists(index_filename):
index_file_name = index_filename
else:
try:
index_file_name = hf_hub_download(
pretrained_model_name_or_path,
model_index_name,
token=token,
)
except (EntryNotFoundError, LocalEntryNotFoundError, HFValidationError, RepositoryNotFoundError):
# not continue training, do not have v_head weight
is_resuming_training = False
logging.warning(f"A {type(pretrained_model)} model is loaded from '{pretrained_model_name_or_path}', " f"and no v_head weight is found. This IS expected if you are not resuming PPO training.")
# load json
if is_resuming_training:
with open(index_file_name, "r") as f:
index = json.load(f)
# check filename with `v_head` or any known extra module:
files_to_download = set()
for k, v in index["weight_map"].items():
if any([module in k for module in cls.supported_modules]):
files_to_download.add(v)
is_sharded = True
return filename, files_to_download, is_sharded, is_resuming_training
@classmethod
def _get_current_device(cls):
r"""
Get the current device. For GPU, we return the local process index using the `accelerate.PartialState`
object to handle corner cases when running scripts in distributed environments.
Returns:
current_device (`Union[int, str]`):
The current device.
"""
state = PartialState()
if is_xpu_available():
return f"xpu:{state.local_process_index}"
elif is_npu_available():
return f"npu:{state.local_process_index}"
else:
return state.local_process_index if torch.cuda.is_available() else "cpu"
@classmethod
def _split_kwargs(cls, kwargs):
"""
Separate the kwargs from the arguments that we support inside
`supported_args` and the ones that we don't.
"""
check_peft_kwargs = False
if is_peft_available():
from peft import prepare_model_for_kbit_training
check_peft_kwargs = True
supported_kwargs = {}
unsupported_kwargs = {}
peft_kwargs = {}
for key, value in kwargs.items():
if key in cls.supported_args:
supported_kwargs[key] = value
else:
unsupported_kwargs[key] = value
if check_peft_kwargs:
if key in prepare_model_for_kbit_training.__code__.co_varnames:
peft_kwargs[key] = value
if key in unsupported_kwargs:
unsupported_kwargs.pop(key)
return supported_kwargs, unsupported_kwargs, peft_kwargs
@classmethod
def add_and_load_reward_modeling_adapter(cls, pretrained_model, adapter_model_id, adapter_name="reward_model_adapter", token=None):
r"""
Add and load a reward modeling adapter. This method can only be used if the
model is a `PeftModel` and if you have initialized the model with the `reward_modeling_adapter_id`
argument, pointing to the id of the reward modeling adapter. The latest needs also to contain the
score head in order to produce the reward.
"""
pretrained_model.load_adapter(adapter_model_id, adapter_name, is_trainable=False)
pretrained_model.train()
filename = os.path.join(adapter_model_id, "adapter_model.bin")
safe_loading = False
if not os.path.exists(filename):
try:
local_filename = hf_hub_download(
adapter_model_id,
"adapter_model.bin",
token=token,
)
except: # noqa
filename = os.path.join(adapter_model_id, "adapter_model.safetensors")
safe_loading = True
if not os.path.exists(filename):
try:
local_filename = hf_hub_download(
adapter_model_id,
"adapter_model.safetensors",
token=token,
)
except: # noqa
raise ValueError("Could not find adapter model in the Hub, make sure you have the correct adapter model id.")
else:
local_filename = filename
else:
local_filename = filename
loading_func = safe_load_file if safe_loading else torch.load
load_kwargs = {} if safe_loading else {"map_location": "cpu"}
adapter_state_dict = loading_func(local_filename, **load_kwargs)
for score_name_candidate in cls.supported_rm_modules:
if any([score_name_candidate in name for name in adapter_state_dict.keys()]):
score_name = score_name_candidate
# we have found the correct head name and can break
break
score_dict = {}
for name, param in adapter_state_dict.items():
if score_name in name:
key_name = ".".join(name.split(".")[-1:])
score_dict[key_name] = param.to(cls._get_current_device())
num_labels, hidden_dim = score_dict["weight"].shape
has_bias = any(["bias" in name for name in adapter_state_dict.keys()])
score = nn.Linear(hidden_dim, num_labels, bias=has_bias).to(
device=cls._get_current_device(),
dtype=pretrained_model.dtype,
)
score.load_state_dict(score_dict)
for param in score.parameters():
param.requires_grad = False
return score
def push_to_hub(self, *args, **kwargs):
r"""
Push the pretrained model to the hub. This method is a wrapper around
`transformers.PreTrainedModel.push_to_hub`. Please refer to the documentation
of `transformers.PreTrainedModel.push_to_hub` for more information.
Args:
*args (`list`, *optional*):
Positional arguments passed along to the underlying model's
`push_to_hub` method.
**kwargs (`dict`, *optional*):
Keyword arguments passed along to the underlying model's
`push_to_hub` method.
"""
raise NotImplementedError
def save_pretrained(self, *args, **kwargs):
r"""
Save the pretrained model to a directory. This method is a wrapper around
`transformers.PreTrainedModel.save_pretrained`. Please refer to the documentation
of `transformers.PreTrainedModel.save_pretrained` for more information.
Args:
*args (`list`, *optional*):
Positional arguments passed along to the underlying model's
`save_pretrained` method.
**kwargs (`dict`, *optional*):
Keyword arguments passed along to the underlying model's
`save_pretrained` method.
"""
state_dict = kwargs.get("state_dict")
if state_dict is None:
state_dict = self.state_dict()
kwargs["state_dict"] = state_dict
# if it is a peft model only save the `v_head` state_dict and
# pop the `state_dict` from the kwargs to avoid slient bugs with `peft`
if self.is_peft_model:
save_path = args[0]
save_path = os.path.join(save_path, "pytorch_model.bin")
torch.save(state_dict, save_path)
_ = kwargs.pop("state_dict", None)
return self.pretrained_model.save_pretrained(*args, **kwargs)
def state_dict(self, *args, **kwargs):
r"""
Return the state_dict of the pretrained model.
"""
raise NotImplementedError
def post_init(self, *args, **kwargs):
r"""
Post initialization method. This method is called after the model is
instantiated and loaded from a checkpoint. It can be used to perform
additional operations such as loading the state_dict.
"""
raise NotImplementedError
def compute_reward_score(self, input_ids, attention_mask=None, **kwargs):
r"""
Computes the reward score for a given input. The method has first to enable the adapter
and then compute the reward score. After that the model disables the reward modeling
adapter and enables the default ppo adapter again.
"""
if not self.supports_rm_adapter:
raise ValueError("This model does not support reward modeling adapter.")
# enable rm adapter
self.pretrained_model.set_adapter(self.rm_adapter_name)
self.pretrained_model.eval()
with torch.no_grad():
base_model_output = self.pretrained_model(
input_ids=input_ids,
attention_mask=attention_mask,
output_hidden_states=True,
return_dict=True,
**kwargs,
)
last_hidden_states = base_model_output.hidden_states[-1]
scores = self.score(last_hidden_states)
self.pretrained_model.set_adapter(self.policy_adapter_name)
self.pretrained_model.eval()
return scores
def create_reference_model(model: PreTrainedModelWrapper, num_shared_layers: int = None, pattern: str = None) -> PreTrainedModelWrapper:
"""
Creates a static reference copy of a model. Note that model will be in `.eval()` mode.
Args:
model (`PreTrainedModelWrapper`): The model to be copied.
num_shared_layers (`int`, *optional*): The number of initial layers that are shared between both models and kept frozen.
pattern (`str`, *optional*): The shared layers are selected with a string pattern
(e.g. "transformer.h.{layer}" for GPT2) and if a custom pattern is necessary it can be passed here.
Returns
`PreTrainedModelWrapper`
"""
if is_deepspeed_zero3_enabled():
raise ValueError("DeepSpeed ZeRO-3 is enabled and is not compatible with `create_reference_model()`. Please instantiate your reference model directly with `AutoCausalLM.from_pretrained()`.")
parameter_names = [n for n, _ in model.named_parameters()]
ref_model = deepcopy(model)
# if no layers are shared, return copy of model
if num_shared_layers is None:
for param_name in parameter_names:
param = ref_model.get_parameter(param_name)
param.requires_grad = False
return ref_model.eval()
# identify layer name pattern
if pattern is not None:
pattern = pattern.format(layer=num_shared_layers)
else:
for pattern_candidate in LAYER_PATTERNS:
pattern_candidate = pattern_candidate.format(layer=num_shared_layers)
if any([pattern_candidate in name for name in parameter_names]):
pattern = pattern_candidate
break
if pattern is None:
raise ValueError("Layer pattern could not be matched.")
# divide parameters in shared and unshared parameter lists
shared_param_list = []
unshared_param_list = []
shared_parameter = True
for name, param in model.named_parameters():
if pattern in name:
shared_parameter = False
if shared_parameter:
shared_param_list.append(name)
else:
unshared_param_list.append(name)
# create reference of the original parameter if they are shared
for param_name in shared_param_list:
param = model.get_parameter(param_name)
param.requires_grad = False
ref_param = ref_model.get_parameter(param_name) # noqa
ref_param = param # noqa
# for all other parameters just make sure they don't use gradients
for param_name in unshared_param_list:
param = ref_model.get_parameter(param_name)
param.requires_grad = False
if pattern is not None and len(unshared_param_list) == 0:
logging.warning("Pattern passed or found, but no layers matched in the model. Check for a typo.")
return ref_model.eval()
|