File size: 27,023 Bytes
252711e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
# Copyright 2023 DDPO-pytorch authors (Kevin Black), metric-space, The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import warnings
from collections import defaultdict
from concurrent import futures
from typing import Any, Callable, Optional, Tuple
from warnings import warn

import torch
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import ProjectConfiguration, set_seed
from huggingface_hub import whoami

from ..models import DDPOStableDiffusionPipeline
from . import BaseTrainer, DDPOConfig
from .utils import PerPromptStatTracker


logger = get_logger(__name__)


MODEL_CARD_TEMPLATE = """---

license: apache-2.0

tags:

- trl

- ddpo

- diffusers

- reinforcement-learning

- text-to-image

- stable-diffusion

---



# {model_name}



This is a diffusion model that has been fine-tuned with reinforcement learning to

 guide the model outputs according to a value, function, or human feedback. The model can be used for image generation conditioned with text.



"""


class DDPOTrainer(BaseTrainer):
    """

    The DDPOTrainer uses Deep Diffusion Policy Optimization to optimise diffusion models.

    Note, this trainer is heavily inspired by the work here: https://github.com/kvablack/ddpo-pytorch

    As of now only Stable Diffusion based pipelines are supported



    Attributes:

        **config** (`DDPOConfig`) -- Configuration object for DDPOTrainer. Check the documentation of `PPOConfig` for more

         details.

        **reward_function** (Callable[[torch.Tensor, Tuple[str], Tuple[Any]], torch.Tensor]) -- Reward function to be used

        **prompt_function** (Callable[[], Tuple[str, Any]]) -- Function to generate prompts to guide model

        **sd_pipeline** (`DDPOStableDiffusionPipeline`) -- Stable Diffusion pipeline to be used for training.

        **image_samples_hook** (Optional[Callable[[Any, Any, Any], Any]]) -- Hook to be called to log images

    """

    _tag_names = ["trl", "ddpo"]

    def __init__(

        self,

        config: DDPOConfig,

        reward_function: Callable[[torch.Tensor, Tuple[str], Tuple[Any]], torch.Tensor],

        prompt_function: Callable[[], Tuple[str, Any]],

        sd_pipeline: DDPOStableDiffusionPipeline,

        image_samples_hook: Optional[Callable[[Any, Any, Any], Any]] = None,

    ):
        if image_samples_hook is None:
            warn("No image_samples_hook provided; no images will be logged")

        self.prompt_fn = prompt_function
        self.reward_fn = reward_function
        self.config = config
        self.image_samples_callback = image_samples_hook

        accelerator_project_config = ProjectConfiguration(**self.config.project_kwargs)

        if self.config.resume_from:
            self.config.resume_from = os.path.normpath(os.path.expanduser(self.config.resume_from))
            if "checkpoint_" not in os.path.basename(self.config.resume_from):
                # get the most recent checkpoint in this directory
                checkpoints = list(
                    filter(
                        lambda x: "checkpoint_" in x,
                        os.listdir(self.config.resume_from),
                    )
                )
                if len(checkpoints) == 0:
                    raise ValueError(f"No checkpoints found in {self.config.resume_from}")
                checkpoint_numbers = sorted([int(x.split("_")[-1]) for x in checkpoints])
                self.config.resume_from = os.path.join(
                    self.config.resume_from,
                    f"checkpoint_{checkpoint_numbers[-1]}",
                )

                accelerator_project_config.iteration = checkpoint_numbers[-1] + 1

        # number of timesteps within each trajectory to train on
        self.num_train_timesteps = int(self.config.sample_num_steps * self.config.train_timestep_fraction)

        self.accelerator = Accelerator(
            log_with=self.config.log_with,
            mixed_precision=self.config.mixed_precision,
            project_config=accelerator_project_config,
            # we always accumulate gradients across timesteps; we want config.train.gradient_accumulation_steps to be the
            # number of *samples* we accumulate across, so we need to multiply by the number of training timesteps to get
            # the total number of optimizer steps to accumulate across.
            gradient_accumulation_steps=self.config.train_gradient_accumulation_steps * self.num_train_timesteps,
            **self.config.accelerator_kwargs,
        )

        is_okay, message = self._config_check()
        if not is_okay:
            raise ValueError(message)

        is_using_tensorboard = config.log_with is not None and config.log_with == "tensorboard"

        if self.accelerator.is_main_process:
            self.accelerator.init_trackers(
                self.config.tracker_project_name,
                config=dict(ddpo_trainer_config=config.to_dict()) if not is_using_tensorboard else config.to_dict(),
                init_kwargs=self.config.tracker_kwargs,
            )

        logger.info(f"\n{config}")

        set_seed(self.config.seed, device_specific=True)

        self.sd_pipeline = sd_pipeline

        self.sd_pipeline.set_progress_bar_config(
            position=1,
            disable=not self.accelerator.is_local_main_process,
            leave=False,
            desc="Timestep",
            dynamic_ncols=True,
        )

        # For mixed precision training we cast all non-trainable weights (vae, non-lora text_encoder and non-lora unet) to half-precision
        # as these weights are only used for inference, keeping weights in full precision is not required.
        if self.accelerator.mixed_precision == "fp16":
            inference_dtype = torch.float16
        elif self.accelerator.mixed_precision == "bf16":
            inference_dtype = torch.bfloat16
        else:
            inference_dtype = torch.float32

        self.sd_pipeline.vae.to(self.accelerator.device, dtype=inference_dtype)
        self.sd_pipeline.text_encoder.to(self.accelerator.device, dtype=inference_dtype)
        self.sd_pipeline.unet.to(self.accelerator.device, dtype=inference_dtype)

        trainable_layers = self.sd_pipeline.get_trainable_layers()

        self.accelerator.register_save_state_pre_hook(self._save_model_hook)
        self.accelerator.register_load_state_pre_hook(self._load_model_hook)

        # Enable TF32 for faster training on Ampere GPUs,
        # cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices
        if self.config.allow_tf32:
            torch.backends.cuda.matmul.allow_tf32 = True

        self.optimizer = self._setup_optimizer(trainable_layers.parameters() if not isinstance(trainable_layers, list) else trainable_layers)

        self.neg_prompt_embed = self.sd_pipeline.text_encoder(
            self.sd_pipeline.tokenizer(
                [""] if self.config.negative_prompts is None else self.config.negative_prompts,
                return_tensors="pt",
                padding="max_length",
                truncation=True,
                max_length=self.sd_pipeline.tokenizer.model_max_length,
            ).input_ids.to(self.accelerator.device)
        )[0]

        if config.per_prompt_stat_tracking:
            self.stat_tracker = PerPromptStatTracker(
                config.per_prompt_stat_tracking_buffer_size,
                config.per_prompt_stat_tracking_min_count,
            )

        # NOTE: for some reason, autocast is necessary for non-lora training but for lora training it isn't necessary and it uses
        # more memory
        self.autocast = self.sd_pipeline.autocast or self.accelerator.autocast

        if hasattr(self.sd_pipeline, "use_lora") and self.sd_pipeline.use_lora:
            unet, self.optimizer = self.accelerator.prepare(trainable_layers, self.optimizer)
            self.trainable_layers = list(filter(lambda p: p.requires_grad, unet.parameters()))
        else:
            self.trainable_layers, self.optimizer = self.accelerator.prepare(trainable_layers, self.optimizer)

        if self.config.async_reward_computation:
            self.executor = futures.ThreadPoolExecutor(max_workers=config.max_workers)

        if config.resume_from:
            logger.info(f"Resuming from {config.resume_from}")
            self.accelerator.load_state(config.resume_from)
            self.first_epoch = int(config.resume_from.split("_")[-1]) + 1
        else:
            self.first_epoch = 0

    def compute_rewards(self, prompt_image_pairs, is_async=False):
        if not is_async:
            rewards = []
            for images, prompts, prompt_metadata in prompt_image_pairs:
                reward, reward_metadata = self.reward_fn(images, prompts, prompt_metadata)
                rewards.append(
                    (
                        torch.as_tensor(reward, device=self.accelerator.device),
                        reward_metadata,
                    )
                )
        else:
            rewards = self.executor.map(lambda x: self.reward_fn(*x), prompt_image_pairs)
            rewards = [(torch.as_tensor(reward.result(), device=self.accelerator.device), reward_metadata.result()) for reward, reward_metadata in rewards]

        return zip(*rewards)

    def step(self, epoch: int, global_step: int):
        """

        Perform a single step of training.



        Args:

            epoch (int): The current epoch.

            global_step (int): The current global step.



        Side Effects:

            - Model weights are updated

            - Logs the statistics to the accelerator trackers.

            - If `self.image_samples_callback` is not None, it will be called with the prompt_image_pairs, global_step, and the accelerator tracker.



        Returns:

            global_step (int): The updated global step.



        """
        samples, prompt_image_data = self._generate_samples(
            iterations=self.config.sample_num_batches_per_epoch,
            batch_size=self.config.sample_batch_size,
        )

        # collate samples into dict where each entry has shape (num_batches_per_epoch * sample.batch_size, ...)
        samples = {k: torch.cat([s[k] for s in samples]) for k in samples[0].keys()}
        rewards, rewards_metadata = self.compute_rewards(prompt_image_data, is_async=self.config.async_reward_computation)

        for i, image_data in enumerate(prompt_image_data):
            image_data.extend([rewards[i], rewards_metadata[i]])

        if self.image_samples_callback is not None:
            self.image_samples_callback(prompt_image_data, global_step, self.accelerator.trackers[0])

        rewards = torch.cat(rewards)
        rewards = self.accelerator.gather(rewards).cpu().numpy()

        self.accelerator.log(
            {
                "reward": rewards,
                "epoch": epoch,
                "reward_mean": rewards.mean(),
                "reward_std": rewards.std(),
            },
            step=global_step,
        )

        if self.config.per_prompt_stat_tracking:
            # gather the prompts across processes
            prompt_ids = self.accelerator.gather(samples["prompt_ids"]).cpu().numpy()
            prompts = self.sd_pipeline.tokenizer.batch_decode(prompt_ids, skip_special_tokens=True)
            advantages = self.stat_tracker.update(prompts, rewards)
        else:
            advantages = (rewards - rewards.mean()) / (rewards.std() + 1e-8)

        # ungather advantages;  keep the entries corresponding to the samples on this process
        samples["advantages"] = torch.as_tensor(advantages).reshape(self.accelerator.num_processes, -1)[self.accelerator.process_index].to(self.accelerator.device)

        del samples["prompt_ids"]

        total_batch_size, num_timesteps = samples["timesteps"].shape

        for inner_epoch in range(self.config.train_num_inner_epochs):
            # shuffle samples along batch dimension
            perm = torch.randperm(total_batch_size, device=self.accelerator.device)
            samples = {k: v[perm] for k, v in samples.items()}

            # shuffle along time dimension independently for each sample
            # still trying to understand the code below
            perms = torch.stack([torch.randperm(num_timesteps, device=self.accelerator.device) for _ in range(total_batch_size)])

            for key in ["timesteps", "latents", "next_latents", "log_probs"]:
                samples[key] = samples[key][
                    torch.arange(total_batch_size, device=self.accelerator.device)[:, None],
                    perms,
                ]

            original_keys = samples.keys()
            original_values = samples.values()
            # rebatch them as user defined train_batch_size is different from sample_batch_size
            reshaped_values = [v.reshape(-1, self.config.train_batch_size, *v.shape[1:]) for v in original_values]

            # Transpose the list of original values
            transposed_values = zip(*reshaped_values)
            # Create new dictionaries for each row of transposed values
            samples_batched = [dict(zip(original_keys, row_values)) for row_values in transposed_values]

            self.sd_pipeline.unet.train()
            global_step = self._train_batched_samples(inner_epoch, epoch, global_step, samples_batched)
            # ensure optimization step at the end of the inner epoch
            if not self.accelerator.sync_gradients:
                raise ValueError("Optimization step should have been performed by this point. Please check calculated gradient accumulation settings.")

        if epoch != 0 and epoch % self.config.save_freq == 0 and self.accelerator.is_main_process:
            self.accelerator.save_state()

        return global_step

    def calculate_loss(self, latents, timesteps, next_latents, log_probs, advantages, embeds):
        """

        Calculate the loss for a batch of an unpacked sample



        Args:

            latents (torch.Tensor):

                The latents sampled from the diffusion model, shape: [batch_size, num_channels_latents, height, width]

            timesteps (torch.Tensor):

                The timesteps sampled from the diffusion model, shape: [batch_size]

            next_latents (torch.Tensor):

                The next latents sampled from the diffusion model, shape: [batch_size, num_channels_latents, height, width]

            log_probs (torch.Tensor):

                The log probabilities of the latents, shape: [batch_size]

            advantages (torch.Tensor):

                The advantages of the latents, shape: [batch_size]

            embeds (torch.Tensor):

                The embeddings of the prompts, shape: [2*batch_size or batch_size, ...]

                Note: the "or" is because if train_cfg is True, the expectation is that negative prompts are concatenated to the embeds



        Returns:

            loss (torch.Tensor), approx_kl (torch.Tensor), clipfrac (torch.Tensor)

            (all of these are of shape (1,))

        """
        with self.autocast():
            if self.config.train_cfg:
                noise_pred = self.sd_pipeline.unet(
                    torch.cat([latents] * 2),
                    torch.cat([timesteps] * 2),
                    embeds,
                ).sample
                noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                noise_pred = noise_pred_uncond + self.config.sample_guidance_scale * (noise_pred_text - noise_pred_uncond)
            else:
                noise_pred = self.sd_pipeline.unet(
                    latents,
                    timesteps,
                    embeds,
                ).sample
            # compute the log prob of next_latents given latents under the current model

            scheduler_step_output = self.sd_pipeline.scheduler_step(
                noise_pred,
                timesteps,
                latents,
                eta=self.config.sample_eta,
                prev_sample=next_latents,
            )

            log_prob = scheduler_step_output.log_probs

        advantages = torch.clamp(
            advantages,
            -self.config.train_adv_clip_max,
            self.config.train_adv_clip_max,
        )

        ratio = torch.exp(log_prob - log_probs)

        loss = self.loss(advantages, self.config.train_clip_range, ratio)

        approx_kl = 0.5 * torch.mean((log_prob - log_probs) ** 2)

        clipfrac = torch.mean((torch.abs(ratio - 1.0) > self.config.train_clip_range).float())

        return loss, approx_kl, clipfrac

    def loss(

        self,

        advantages: torch.Tensor,

        clip_range: float,

        ratio: torch.Tensor,

    ):
        unclipped_loss = -advantages * ratio
        clipped_loss = -advantages * torch.clamp(
            ratio,
            1.0 - clip_range,
            1.0 + clip_range,
        )
        return torch.mean(torch.maximum(unclipped_loss, clipped_loss))

    def _setup_optimizer(self, trainable_layers_parameters):
        if self.config.train_use_8bit_adam:
            import bitsandbytes

            optimizer_cls = bitsandbytes.optim.AdamW8bit
        else:
            optimizer_cls = torch.optim.AdamW

        return optimizer_cls(
            trainable_layers_parameters,
            lr=self.config.train_learning_rate,
            betas=(self.config.train_adam_beta1, self.config.train_adam_beta2),
            weight_decay=self.config.train_adam_weight_decay,
            eps=self.config.train_adam_epsilon,
        )

    def _save_model_hook(self, models, weights, output_dir):
        self.sd_pipeline.save_checkpoint(models, weights, output_dir)
        weights.pop()  # ensures that accelerate doesn't try to handle saving of the model

    def _load_model_hook(self, models, input_dir):
        self.sd_pipeline.load_checkpoint(models, input_dir)
        models.pop()  # ensures that accelerate doesn't try to handle loading of the model

    def _generate_samples(self, iterations, batch_size):
        """

        Generate samples from the model



        Args:

            iterations (int): Number of iterations to generate samples for

            batch_size (int): Batch size to use for sampling



        Returns:

            samples (List[Dict[str, torch.Tensor]]), prompt_image_pairs (List[List[Any]])

        """
        samples = []
        prompt_image_pairs = []
        self.sd_pipeline.unet.eval()

        sample_neg_prompt_embeds = self.neg_prompt_embed.repeat(batch_size, 1, 1)

        for _ in range(iterations):
            prompts, prompt_metadata = zip(*[self.prompt_fn() for _ in range(batch_size)])

            prompt_ids = self.sd_pipeline.tokenizer(
                prompts,
                return_tensors="pt",
                padding="max_length",
                truncation=True,
                max_length=self.sd_pipeline.tokenizer.model_max_length,
            ).input_ids.to(self.accelerator.device)
            prompt_embeds = self.sd_pipeline.text_encoder(prompt_ids)[0]

            with self.autocast():
                sd_output = self.sd_pipeline(
                    prompt_embeds=prompt_embeds,
                    negative_prompt_embeds=sample_neg_prompt_embeds,
                    num_inference_steps=self.config.sample_num_steps,
                    guidance_scale=self.config.sample_guidance_scale,
                    eta=self.config.sample_eta,
                    output_type="pt",
                )

                images = sd_output.images
                latents = sd_output.latents
                log_probs = sd_output.log_probs

            latents = torch.stack(latents, dim=1)  # (batch_size, num_steps + 1, ...)
            log_probs = torch.stack(log_probs, dim=1)  # (batch_size, num_steps, 1)
            timesteps = self.sd_pipeline.scheduler.timesteps.repeat(batch_size, 1)  # (batch_size, num_steps)

            samples.append(
                {
                    "prompt_ids": prompt_ids,
                    "prompt_embeds": prompt_embeds,
                    "timesteps": timesteps,
                    "latents": latents[:, :-1],  # each entry is the latent before timestep t
                    "next_latents": latents[:, 1:],  # each entry is the latent after timestep t
                    "log_probs": log_probs,
                    "negative_prompt_embeds": sample_neg_prompt_embeds,
                }
            )
            prompt_image_pairs.append([images, prompts, prompt_metadata])

        return samples, prompt_image_pairs

    def _train_batched_samples(self, inner_epoch, epoch, global_step, batched_samples):
        """

        Train on a batch of samples. Main training segment



        Args:

            inner_epoch (int): The current inner epoch

            epoch (int): The current epoch

            global_step (int): The current global step

            batched_samples (List[Dict[str, torch.Tensor]]): The batched samples to train on



        Side Effects:

            - Model weights are updated

            - Logs the statistics to the accelerator trackers.



        Returns:

            global_step (int): The updated global step

        """
        info = defaultdict(list)
        for i, sample in enumerate(batched_samples):
            if self.config.train_cfg:
                # concat negative prompts to sample prompts to avoid two forward passes
                embeds = torch.cat([sample["negative_prompt_embeds"], sample["prompt_embeds"]])
            else:
                embeds = sample["prompt_embeds"]

            for j in range(self.num_train_timesteps):
                with self.accelerator.accumulate(self.sd_pipeline.unet):
                    loss, approx_kl, clipfrac = self.calculate_loss(
                        sample["latents"][:, j],
                        sample["timesteps"][:, j],
                        sample["next_latents"][:, j],
                        sample["log_probs"][:, j],
                        sample["advantages"],
                        embeds,
                    )
                    info["approx_kl"].append(approx_kl)
                    info["clipfrac"].append(clipfrac)
                    info["loss"].append(loss)

                    self.accelerator.backward(loss)
                    if self.accelerator.sync_gradients:
                        self.accelerator.clip_grad_norm_(
                            self.trainable_layers.parameters() if not isinstance(self.trainable_layers, list) else self.trainable_layers,
                            self.config.train_max_grad_norm,
                        )
                    self.optimizer.step()
                    self.optimizer.zero_grad()

                # Checks if the accelerator has performed an optimization step behind the scenes
                if self.accelerator.sync_gradients:
                    # log training-related stuff
                    info = {k: torch.mean(torch.stack(v)) for k, v in info.items()}
                    info = self.accelerator.reduce(info, reduction="mean")
                    info.update({"epoch": epoch, "inner_epoch": inner_epoch})
                    self.accelerator.log(info, step=global_step)
                    global_step += 1
                    info = defaultdict(list)
        return global_step

    def _config_check(self) -> Tuple[bool, str]:
        samples_per_epoch = self.config.sample_batch_size * self.accelerator.num_processes * self.config.sample_num_batches_per_epoch
        total_train_batch_size = self.config.train_batch_size * self.accelerator.num_processes * self.config.train_gradient_accumulation_steps

        if not self.config.sample_batch_size >= self.config.train_batch_size:
            return (
                False,
                f"Sample batch size ({self.config.sample_batch_size}) must be greater than or equal to the train batch size ({self.config.train_batch_size})",
            )
        if not self.config.sample_batch_size % self.config.train_batch_size == 0:
            return (
                False,
                f"Sample batch size ({self.config.sample_batch_size}) must be divisible by the train batch size ({self.config.train_batch_size})",
            )
        if not samples_per_epoch % total_train_batch_size == 0:
            return (
                False,
                f"Number of samples per epoch ({samples_per_epoch}) must be divisible by the total train batch size ({total_train_batch_size})",
            )
        return True, ""

    def train(self, epochs: Optional[int] = None):
        """

        Train the model for a given number of epochs

        """
        global_step = 0
        if epochs is None:
            epochs = self.config.num_epochs
        for epoch in range(self.first_epoch, epochs):
            global_step = self.step(epoch, global_step)

    def create_model_card(self, path: str, model_name: Optional[str] = "TRL DDPO Model") -> None:
        """Creates and saves a model card for a TRL model.



        Args:

            path (`str`): The path to save the model card to.

            model_name (`str`, *optional*): The name of the model, defaults to `TRL DDPO Model`.

        """
        try:
            user = whoami()["name"]
        # handle the offline case
        except:  # noqa
            warnings.warn("Cannot retrieve user information assuming you are running in offline mode.")
            return

        if not os.path.exists(path):
            os.makedirs(path)

        model_card_content = MODEL_CARD_TEMPLATE.format(model_name=model_name, model_id=f"{user}/{path}")
        with open(os.path.join(path, "README.md"), "w", encoding="utf-8") as f:
            f.write(model_card_content)

    def _save_pretrained(self, save_directory):
        self.sd_pipeline.save_pretrained(save_directory)
        self.create_model_card(save_directory)