|
"""
|
|
A model worker executes the model.
|
|
"""
|
|
|
|
import argparse
|
|
import asyncio
|
|
from concurrent.futures import ThreadPoolExecutor
|
|
import json
|
|
import time
|
|
import threading
|
|
import uuid
|
|
|
|
from fastapi import FastAPI, Request, BackgroundTasks
|
|
from fastapi.responses import StreamingResponse
|
|
import requests
|
|
import re
|
|
import uvicorn
|
|
from functools import partial
|
|
|
|
from llava.constants import WORKER_HEART_BEAT_INTERVAL
|
|
from llava.utils import build_logger, server_error_msg, pretty_print_semaphore
|
|
from llava.model.builder import load_pretrained_model
|
|
from llava.mm_utils import process_images, load_image_from_base64, tokenizer_image_token, expand2square
|
|
from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
|
|
from transformers import AutoTokenizer
|
|
|
|
import sglang as sgl
|
|
from sglang.test.test_utils import add_common_sglang_args_and_parse, select_sglang_backend
|
|
from sglang.backend.runtime_endpoint import RuntimeEndpoint
|
|
from sglang.utils import read_jsonl, dump_state_text
|
|
from sglang.lang.interpreter import ProgramState
|
|
|
|
|
|
GB = 1 << 30
|
|
|
|
worker_id = str(uuid.uuid4())[:6]
|
|
logger = build_logger("model_worker", f"model_worker_{worker_id}.log")
|
|
global_counter = 0
|
|
|
|
model_semaphore = None
|
|
|
|
|
|
def heart_beat_worker(controller):
|
|
while True:
|
|
time.sleep(WORKER_HEART_BEAT_INTERVAL)
|
|
controller.send_heart_beat()
|
|
|
|
|
|
@sgl.function
|
|
def pipeline(s, prompt, max_tokens):
|
|
for p in prompt:
|
|
if type(p) is str:
|
|
s += p
|
|
else:
|
|
s += sgl.image(p)
|
|
s += sgl.gen("response", max_tokens=max_tokens)
|
|
|
|
|
|
class ModelWorker:
|
|
def __init__(self, controller_addr, worker_addr, sgl_endpoint, worker_id, no_register, model_name):
|
|
self.controller_addr = controller_addr
|
|
self.worker_addr = worker_addr
|
|
self.worker_id = worker_id
|
|
|
|
|
|
backend = RuntimeEndpoint(sgl_endpoint)
|
|
sgl.set_default_backend(backend)
|
|
model_path = backend.model_info["model_path"]
|
|
|
|
if model_path.endswith("/"):
|
|
model_path = model_path[:-1]
|
|
if model_name is None:
|
|
model_paths = model_path.split("/")
|
|
if model_paths[-1].startswith("checkpoint-"):
|
|
self.model_name = model_paths[-2] + "_" + model_paths[-1]
|
|
else:
|
|
self.model_name = model_paths[-1]
|
|
else:
|
|
self.model_name = model_name
|
|
|
|
logger.info(f"Loading the SGLANG model {self.model_name} on worker {worker_id} ...")
|
|
|
|
if not no_register:
|
|
self.register_to_controller()
|
|
self.heart_beat_thread = threading.Thread(target=heart_beat_worker, args=(self,))
|
|
self.heart_beat_thread.start()
|
|
|
|
def register_to_controller(self):
|
|
logger.info("Register to controller")
|
|
|
|
url = self.controller_addr + "/register_worker"
|
|
data = {"worker_name": self.worker_addr, "check_heart_beat": True, "worker_status": self.get_status()}
|
|
r = requests.post(url, json=data)
|
|
assert r.status_code == 200
|
|
|
|
def send_heart_beat(self):
|
|
logger.info(f"Send heart beat. Models: {[self.model_name]}. " f"Semaphore: {pretty_print_semaphore(model_semaphore)}. " f"global_counter: {global_counter}")
|
|
|
|
url = self.controller_addr + "/receive_heart_beat"
|
|
|
|
while True:
|
|
try:
|
|
ret = requests.post(url, json={"worker_name": self.worker_addr, "queue_length": self.get_queue_length()}, timeout=5)
|
|
exist = ret.json()["exist"]
|
|
break
|
|
except requests.exceptions.RequestException as e:
|
|
logger.error(f"heart beat error: {e}")
|
|
time.sleep(5)
|
|
|
|
if not exist:
|
|
self.register_to_controller()
|
|
|
|
def get_queue_length(self):
|
|
if model_semaphore is None:
|
|
return 0
|
|
else:
|
|
return args.limit_model_concurrency - model_semaphore._value + (len(model_semaphore._waiters) if model_semaphore._waiters is not None else 0)
|
|
|
|
def get_status(self):
|
|
return {
|
|
"model_names": [self.model_name],
|
|
"speed": 1,
|
|
"queue_length": self.get_queue_length(),
|
|
}
|
|
|
|
async def generate_stream(self, params):
|
|
ori_prompt = prompt = params["prompt"]
|
|
images = params.get("images", None)
|
|
if images is not None and len(images) > 0:
|
|
if len(images) > 0:
|
|
if len(images) != prompt.count(DEFAULT_IMAGE_TOKEN):
|
|
raise ValueError("Number of images does not match number of <image> tokens in prompt")
|
|
|
|
images = [load_image_from_base64(image) for image in images]
|
|
|
|
images = [expand2square(image, tuple(int(x * 255) for x in [0.48145466, 0.4578275, 0.40821073])) for image in images]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
prompt = prompt.replace(" " + DEFAULT_IMAGE_TOKEN + "\n", DEFAULT_IMAGE_TOKEN)
|
|
prompt_split = prompt.split(DEFAULT_IMAGE_TOKEN)
|
|
prompt = []
|
|
for i in range(len(prompt_split)):
|
|
prompt.append(prompt_split[i])
|
|
if i < len(images):
|
|
prompt.append(images[i])
|
|
else:
|
|
prompt = [prompt]
|
|
|
|
temperature = float(params.get("temperature", 1.0))
|
|
top_p = float(params.get("top_p", 1.0))
|
|
|
|
max_new_tokens = min(int(params.get("max_new_tokens", 256)), 1024)
|
|
stop_str = params.get("stop", None)
|
|
stop_str = [stop_str] if stop_str is not None else None
|
|
|
|
if max_new_tokens < 1:
|
|
yield json.dumps({"text": ori_prompt + "Exceeds max token length. Please start a new conversation, thanks.", "error_code": 0}).encode() + b"\0"
|
|
return
|
|
|
|
|
|
state = pipeline.run(prompt, max_new_tokens, temperature=temperature, top_p=top_p, stream=True)
|
|
|
|
generated_text = ori_prompt
|
|
async for text_outputs in state.text_async_iter(var_name="response"):
|
|
generated_text += text_outputs
|
|
yield json.dumps({"text": generated_text, "error_code": 0}).encode() + b"\0"
|
|
|
|
async def generate_stream_gate(self, params):
|
|
try:
|
|
async for x in self.generate_stream(params):
|
|
yield x
|
|
except ValueError as e:
|
|
print("Caught ValueError:", e)
|
|
ret = {
|
|
"text": server_error_msg,
|
|
"error_code": 1,
|
|
}
|
|
yield json.dumps(ret).encode() + b"\0"
|
|
except Exception as e:
|
|
print("Caught Unknown Error", e)
|
|
ret = {
|
|
"text": server_error_msg,
|
|
"error_code": 1,
|
|
}
|
|
yield json.dumps(ret).encode() + b"\0"
|
|
|
|
|
|
app = FastAPI()
|
|
|
|
|
|
def release_model_semaphore(fn=None):
|
|
model_semaphore.release()
|
|
if fn is not None:
|
|
fn()
|
|
|
|
|
|
@app.post("/worker_generate_stream")
|
|
async def generate_stream(request: Request):
|
|
global model_semaphore, global_counter
|
|
global_counter += 1
|
|
params = await request.json()
|
|
|
|
if model_semaphore is None:
|
|
model_semaphore = asyncio.Semaphore(args.limit_model_concurrency)
|
|
await model_semaphore.acquire()
|
|
worker.send_heart_beat()
|
|
generator = worker.generate_stream_gate(params)
|
|
background_tasks = BackgroundTasks()
|
|
background_tasks.add_task(partial(release_model_semaphore, fn=worker.send_heart_beat))
|
|
return StreamingResponse(generator, background=background_tasks)
|
|
|
|
|
|
@app.post("/worker_get_status")
|
|
async def get_status(request: Request):
|
|
return worker.get_status()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("--host", type=str, default="localhost")
|
|
parser.add_argument("--port", type=int, default=21002)
|
|
parser.add_argument("--worker-address", type=str, default="http://localhost:21002")
|
|
parser.add_argument("--controller-address", type=str, default="http://localhost:21001")
|
|
parser.add_argument("--model-name", type=str)
|
|
parser.add_argument("--sgl-endpoint", type=str)
|
|
parser.add_argument("--limit-model-concurrency", type=int, default=5)
|
|
parser.add_argument("--stream-interval", type=int, default=1)
|
|
parser.add_argument("--no-register", action="store_true")
|
|
args = parser.parse_args()
|
|
logger.info(f"args: {args}")
|
|
|
|
worker = ModelWorker(args.controller_address, args.worker_address, args.sgl_endpoint, worker_id, args.no_register, args.model_name)
|
|
uvicorn.run(app, host=args.host, port=args.port, log_level="info")
|
|
|