|
import datetime
|
|
import logging
|
|
import logging.handlers
|
|
import os
|
|
import sys
|
|
import numpy as np
|
|
|
|
import requests
|
|
|
|
from llava.constants import LOGDIR
|
|
|
|
server_error_msg = "**NETWORK ERROR DUE TO HIGH TRAFFIC. PLEASE REGENERATE OR REFRESH THIS PAGE.**"
|
|
moderation_msg = "I am sorry. Your input may violate our content moderation guidelines. Please avoid using harmful or offensive content."
|
|
|
|
handler = None
|
|
|
|
import torch.distributed as dist
|
|
|
|
try:
|
|
import av
|
|
from decord import VideoReader, cpu
|
|
except ImportError:
|
|
print("Please install pyav to use video processing functions.")
|
|
|
|
def process_video_with_decord(video_file, data_args):
|
|
vr = VideoReader(video_file, ctx=cpu(0), num_threads=1)
|
|
total_frame_num = len(vr)
|
|
avg_fps = round(vr.get_avg_fps() / data_args.video_fps)
|
|
frame_idx = [i for i in range(0, total_frame_num, avg_fps)]
|
|
|
|
if data_args.frames_upbound > 0:
|
|
if len(frame_idx) > data_args.frames_upbound:
|
|
uniform_sampled_frames = np.linspace(0, total_frame_num - 1, data_args.frames_upbound, dtype=int)
|
|
frame_idx = uniform_sampled_frames.tolist()
|
|
|
|
video = vr.get_batch(frame_idx).asnumpy()
|
|
|
|
vr.seek(0)
|
|
return video
|
|
|
|
def process_video_with_pyav(video_file, data_args):
|
|
container = av.open(video_file)
|
|
|
|
container.streams.video[0].thread_type = "AUTO"
|
|
|
|
video_frames = []
|
|
for packet in container.demux():
|
|
if packet.stream.type == 'video':
|
|
for frame in packet.decode():
|
|
video_frames.append(frame)
|
|
total_frame_num = len(video_frames)
|
|
video_time = video_frames[-1].time
|
|
avg_fps = round(total_frame_num / video_time / data_args.video_fps)
|
|
frame_idx = [i for i in range(0, total_frame_num, avg_fps)]
|
|
|
|
if data_args.frames_upbound > 0:
|
|
if len(frame_idx) > data_args.frames_upbound:
|
|
uniform_sampled_frames = np.linspace(0, total_frame_num - 1, data_args.frames_upbound, dtype=int)
|
|
frame_idx = uniform_sampled_frames.tolist()
|
|
|
|
|
|
frames = [video_frames[i] for i in frame_idx]
|
|
return np.stack([x.to_ndarray(format="rgb24") for x in frames])
|
|
|
|
|
|
def rank0_print(*args):
|
|
if dist.is_initialized():
|
|
if dist.get_rank() == 0:
|
|
print(f"Rank {dist.get_rank()}: ", *args)
|
|
else:
|
|
print(*args)
|
|
|
|
|
|
def rank_print(*args):
|
|
if dist.is_initialized():
|
|
print(f"Rank {dist.get_rank()}: ", *args)
|
|
else:
|
|
print(*args)
|
|
|
|
def build_logger(logger_name, logger_filename):
|
|
global handler
|
|
|
|
formatter = logging.Formatter(
|
|
fmt="%(asctime)s | %(levelname)s | %(name)s | %(message)s",
|
|
datefmt="%Y-%m-%d %H:%M:%S",
|
|
)
|
|
|
|
|
|
if not logging.getLogger().handlers:
|
|
logging.basicConfig(level=logging.INFO)
|
|
logging.getLogger().handlers[0].setFormatter(formatter)
|
|
|
|
|
|
stdout_logger = logging.getLogger("stdout")
|
|
stdout_logger.setLevel(logging.INFO)
|
|
sl = StreamToLogger(stdout_logger, logging.INFO)
|
|
sys.stdout = sl
|
|
|
|
stderr_logger = logging.getLogger("stderr")
|
|
stderr_logger.setLevel(logging.ERROR)
|
|
sl = StreamToLogger(stderr_logger, logging.ERROR)
|
|
sys.stderr = sl
|
|
|
|
|
|
logger = logging.getLogger(logger_name)
|
|
logger.setLevel(logging.INFO)
|
|
|
|
|
|
if handler is None:
|
|
os.makedirs(LOGDIR, exist_ok=True)
|
|
filename = os.path.join(LOGDIR, logger_filename)
|
|
handler = logging.handlers.TimedRotatingFileHandler(filename, when="D", utc=True)
|
|
handler.setFormatter(formatter)
|
|
|
|
for name, item in logging.root.manager.loggerDict.items():
|
|
if isinstance(item, logging.Logger):
|
|
item.addHandler(handler)
|
|
|
|
return logger
|
|
|
|
|
|
class StreamToLogger(object):
|
|
"""
|
|
Fake file-like stream object that redirects writes to a logger instance.
|
|
"""
|
|
|
|
def __init__(self, logger, log_level=logging.INFO):
|
|
self.terminal = sys.stdout
|
|
self.logger = logger
|
|
self.log_level = log_level
|
|
self.linebuf = ""
|
|
|
|
def __getattr__(self, attr):
|
|
return getattr(self.terminal, attr)
|
|
|
|
def write(self, buf):
|
|
temp_linebuf = self.linebuf + buf
|
|
self.linebuf = ""
|
|
for line in temp_linebuf.splitlines(True):
|
|
|
|
|
|
|
|
|
|
|
|
if line[-1] == "\n":
|
|
self.logger.log(self.log_level, line.rstrip())
|
|
else:
|
|
self.linebuf += line
|
|
|
|
def flush(self):
|
|
if self.linebuf != "":
|
|
self.logger.log(self.log_level, self.linebuf.rstrip())
|
|
self.linebuf = ""
|
|
|
|
|
|
def disable_torch_init():
|
|
"""
|
|
Disable the redundant torch default initialization to accelerate model creation.
|
|
"""
|
|
import torch
|
|
|
|
setattr(torch.nn.Linear, "reset_parameters", lambda self: None)
|
|
setattr(torch.nn.LayerNorm, "reset_parameters", lambda self: None)
|
|
|
|
|
|
def violates_moderation(text):
|
|
"""
|
|
Check whether the text violates OpenAI moderation API.
|
|
"""
|
|
url = "https://api.openai.com/v1/moderations"
|
|
headers = {"Content-Type": "application/json", "Authorization": "Bearer " + os.environ["OPENAI_API_KEY"]}
|
|
text = text.replace("\n", "")
|
|
data = "{" + '"input": ' + f'"{text}"' + "}"
|
|
data = data.encode("utf-8")
|
|
try:
|
|
ret = requests.post(url, headers=headers, data=data, timeout=5)
|
|
flagged = ret.json()["results"][0]["flagged"]
|
|
except requests.exceptions.RequestException as e:
|
|
print(f"######################### Moderation Error: {e} #########################")
|
|
flagged = False
|
|
except KeyError as e:
|
|
print(f"######################### Moderation Error: {e} #########################")
|
|
flagged = False
|
|
|
|
return flagged
|
|
|
|
|
|
def pretty_print_semaphore(semaphore):
|
|
if semaphore is None:
|
|
return "None"
|
|
return f"Semaphore(value={semaphore._value}, locked={semaphore.locked()})"
|
|
|