BingCrosbee
commited on
Commit
•
b582688
1
Parent(s):
811f379
upload conversion
Browse files- AudioEncoder.mlmodelc/analytics/coremldata.bin +3 -0
- AudioEncoder.mlmodelc/coremldata.bin +3 -0
- AudioEncoder.mlmodelc/metadata.json +69 -0
- AudioEncoder.mlmodelc/model.mil +0 -0
- AudioEncoder.mlmodelc/weights/weight.bin +3 -0
- MelSpectrogram.mlmodelc/analytics/coremldata.bin +3 -0
- MelSpectrogram.mlmodelc/coremldata.bin +3 -0
- MelSpectrogram.mlmodelc/metadata.json +71 -0
- MelSpectrogram.mlmodelc/model.mil +66 -0
- MelSpectrogram.mlmodelc/weights/weight.bin +3 -0
- TextDecoder.mlmodelc/analytics/coremldata.bin +3 -0
- TextDecoder.mlmodelc/coremldata.bin +3 -0
- TextDecoder.mlmodelc/metadata.json +165 -0
- TextDecoder.mlmodelc/model.mil +0 -0
- TextDecoder.mlmodelc/weights/weight.bin +3 -0
AudioEncoder.mlmodelc/analytics/coremldata.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:45c2deb370b511edeaa9f5b3f00a146ec6c3b83f48670a7c287078b160abf27a
|
3 |
+
size 243
|
AudioEncoder.mlmodelc/coremldata.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d42fc6687181ffee1b5c08f0cf2a616852732400954c74f068abd9f3e597638f
|
3 |
+
size 348
|
AudioEncoder.mlmodelc/metadata.json
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"metadataOutputVersion" : "3.0",
|
4 |
+
"storagePrecision" : "Float16",
|
5 |
+
"outputSchema" : [
|
6 |
+
{
|
7 |
+
"hasShapeFlexibility" : "0",
|
8 |
+
"isOptional" : "0",
|
9 |
+
"dataType" : "Float16",
|
10 |
+
"formattedType" : "MultiArray (Float16 1 × 1280 × 1 × 1500)",
|
11 |
+
"shortDescription" : "",
|
12 |
+
"shape" : "[1, 1280, 1, 1500]",
|
13 |
+
"name" : "encoder_output_embeds",
|
14 |
+
"type" : "MultiArray"
|
15 |
+
}
|
16 |
+
],
|
17 |
+
"modelParameters" : [
|
18 |
+
|
19 |
+
],
|
20 |
+
"specificationVersion" : 7,
|
21 |
+
"mlProgramOperationTypeHistogram" : {
|
22 |
+
"Concat" : 672,
|
23 |
+
"Ios16.rsqrt" : 65,
|
24 |
+
"Ios16.mul" : 2690,
|
25 |
+
"SliceByIndex" : 4480,
|
26 |
+
"Ios16.sub" : 65,
|
27 |
+
"Transpose" : 32,
|
28 |
+
"Ios16.einsum" : 5120,
|
29 |
+
"Ios16.conv" : 194,
|
30 |
+
"Ios16.add" : 130,
|
31 |
+
"Ios16.reduceMean" : 130,
|
32 |
+
"Ios16.softmax" : 2560,
|
33 |
+
"Ios16.gelu" : 34,
|
34 |
+
"Ios16.batchNorm" : 65
|
35 |
+
},
|
36 |
+
"computePrecision" : "Mixed (Float16, Int32)",
|
37 |
+
"isUpdatable" : "0",
|
38 |
+
"availability" : {
|
39 |
+
"macOS" : "13.0",
|
40 |
+
"tvOS" : "16.0",
|
41 |
+
"visionOS" : "1.0",
|
42 |
+
"watchOS" : "9.0",
|
43 |
+
"iOS" : "16.0",
|
44 |
+
"macCatalyst" : "16.0"
|
45 |
+
},
|
46 |
+
"modelType" : {
|
47 |
+
"name" : "MLModelType_mlProgram"
|
48 |
+
},
|
49 |
+
"userDefinedMetadata" : {
|
50 |
+
"com.github.apple.coremltools.source_dialect" : "TorchScript",
|
51 |
+
"com.github.apple.coremltools.version" : "7.1",
|
52 |
+
"com.github.apple.coremltools.source" : "torch==2.2.2"
|
53 |
+
},
|
54 |
+
"inputSchema" : [
|
55 |
+
{
|
56 |
+
"hasShapeFlexibility" : "0",
|
57 |
+
"isOptional" : "0",
|
58 |
+
"dataType" : "Float16",
|
59 |
+
"formattedType" : "MultiArray (Float16 1 × 128 × 1 × 3000)",
|
60 |
+
"shortDescription" : "",
|
61 |
+
"shape" : "[1, 128, 1, 3000]",
|
62 |
+
"name" : "melspectrogram_features",
|
63 |
+
"type" : "MultiArray"
|
64 |
+
}
|
65 |
+
],
|
66 |
+
"generatedClassName" : "AudioEncoder",
|
67 |
+
"method" : "predict"
|
68 |
+
}
|
69 |
+
]
|
AudioEncoder.mlmodelc/model.mil
ADDED
The diff for this file is too large to render.
See raw diff
|
|
AudioEncoder.mlmodelc/weights/weight.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f8f1f11c2bf35396fe2cab0e20fc24ec5656b020ace2ba04a334203eaaf5efe6
|
3 |
+
size 1273974400
|
MelSpectrogram.mlmodelc/analytics/coremldata.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d9a7ccf2771a8294df0c98676dd54a0bd80224e86d78d0f75020fdfa84a986dc
|
3 |
+
size 243
|
MelSpectrogram.mlmodelc/coremldata.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4c6943308417b50451ce0af0e81cde9599b646dd2c64805d8c608a930995c28e
|
3 |
+
size 329
|
MelSpectrogram.mlmodelc/metadata.json
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"metadataOutputVersion" : "3.0",
|
4 |
+
"storagePrecision" : "Float16",
|
5 |
+
"outputSchema" : [
|
6 |
+
{
|
7 |
+
"hasShapeFlexibility" : "0",
|
8 |
+
"isOptional" : "0",
|
9 |
+
"dataType" : "Float16",
|
10 |
+
"formattedType" : "MultiArray (Float16 1 × 128 × 1 × 3000)",
|
11 |
+
"shortDescription" : "",
|
12 |
+
"shape" : "[1, 128, 1, 3000]",
|
13 |
+
"name" : "melspectrogram_features",
|
14 |
+
"type" : "MultiArray"
|
15 |
+
}
|
16 |
+
],
|
17 |
+
"modelParameters" : [
|
18 |
+
|
19 |
+
],
|
20 |
+
"specificationVersion" : 7,
|
21 |
+
"mlProgramOperationTypeHistogram" : {
|
22 |
+
"Pad" : 1,
|
23 |
+
"Ios16.mul" : 2,
|
24 |
+
"SliceByIndex" : 1,
|
25 |
+
"Ios16.sub" : 1,
|
26 |
+
"Ios16.log" : 1,
|
27 |
+
"Ios16.conv" : 2,
|
28 |
+
"Ios16.add" : 3,
|
29 |
+
"Ios16.square" : 2,
|
30 |
+
"Ios16.matmul" : 1,
|
31 |
+
"Squeeze" : 2,
|
32 |
+
"Ios16.maximum" : 1,
|
33 |
+
"ExpandDims" : 4,
|
34 |
+
"Ios16.reduceMax" : 1,
|
35 |
+
"Identity" : 1,
|
36 |
+
"Ios16.reshape" : 2
|
37 |
+
},
|
38 |
+
"computePrecision" : "Mixed (Float16, Int32)",
|
39 |
+
"isUpdatable" : "0",
|
40 |
+
"availability" : {
|
41 |
+
"macOS" : "13.0",
|
42 |
+
"tvOS" : "16.0",
|
43 |
+
"visionOS" : "1.0",
|
44 |
+
"watchOS" : "9.0",
|
45 |
+
"iOS" : "16.0",
|
46 |
+
"macCatalyst" : "16.0"
|
47 |
+
},
|
48 |
+
"modelType" : {
|
49 |
+
"name" : "MLModelType_mlProgram"
|
50 |
+
},
|
51 |
+
"userDefinedMetadata" : {
|
52 |
+
"com.github.apple.coremltools.source_dialect" : "TorchScript",
|
53 |
+
"com.github.apple.coremltools.source" : "torch==2.2.2",
|
54 |
+
"com.github.apple.coremltools.version" : "7.1"
|
55 |
+
},
|
56 |
+
"inputSchema" : [
|
57 |
+
{
|
58 |
+
"hasShapeFlexibility" : "0",
|
59 |
+
"isOptional" : "0",
|
60 |
+
"dataType" : "Float16",
|
61 |
+
"formattedType" : "MultiArray (Float16 480000)",
|
62 |
+
"shortDescription" : "",
|
63 |
+
"shape" : "[480000]",
|
64 |
+
"name" : "audio",
|
65 |
+
"type" : "MultiArray"
|
66 |
+
}
|
67 |
+
],
|
68 |
+
"generatedClassName" : "MelSpectrogram",
|
69 |
+
"method" : "predict"
|
70 |
+
}
|
71 |
+
]
|
MelSpectrogram.mlmodelc/model.mil
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
program(1.0)
|
2 |
+
[buildInfo = dict<tensor<string, []>, tensor<string, []>>({{"coremlc-component-MIL", "3304.5.2"}, {"coremlc-version", "3304.6.2"}, {"coremltools-component-torch", "2.2.2"}, {"coremltools-source-dialect", "TorchScript"}, {"coremltools-version", "7.1"}})]
|
3 |
+
{
|
4 |
+
func main<ios16>(tensor<fp16, [480000]> audio) {
|
5 |
+
tensor<int32, [3]> var_10 = const()[name = tensor<string, []>("op_10"), val = tensor<int32, [3]>([1, 1, 480000])];
|
6 |
+
tensor<fp16, [1, 1, 480000]> input_1_cast_fp16 = reshape(shape = var_10, x = audio)[name = tensor<string, []>("input_1_cast_fp16")];
|
7 |
+
tensor<int32, [6]> input_3_pad_0 = const()[name = tensor<string, []>("input_3_pad_0"), val = tensor<int32, [6]>([0, 0, 0, 0, 200, 200])];
|
8 |
+
tensor<string, []> input_3_mode_0 = const()[name = tensor<string, []>("input_3_mode_0"), val = tensor<string, []>("reflect")];
|
9 |
+
tensor<fp16, []> input_3_constant_val_0_to_fp16 = const()[name = tensor<string, []>("input_3_constant_val_0_to_fp16"), val = tensor<fp16, []>(0x0p+0)];
|
10 |
+
tensor<fp16, [1, 1, 480400]> input_3_cast_fp16 = pad(constant_val = input_3_constant_val_0_to_fp16, mode = input_3_mode_0, pad = input_3_pad_0, x = input_1_cast_fp16)[name = tensor<string, []>("input_3_cast_fp16")];
|
11 |
+
tensor<int32, [1]> var_22 = const()[name = tensor<string, []>("op_22"), val = tensor<int32, [1]>([480400])];
|
12 |
+
tensor<fp16, [480400]> input_cast_fp16 = reshape(shape = var_22, x = input_3_cast_fp16)[name = tensor<string, []>("input_cast_fp16")];
|
13 |
+
tensor<int32, [1]> expand_dims_0_axes_0 = const()[name = tensor<string, []>("expand_dims_0_axes_0"), val = tensor<int32, [1]>([0])];
|
14 |
+
tensor<fp16, [1, 480400]> expand_dims_0_cast_fp16 = expand_dims(axes = expand_dims_0_axes_0, x = input_cast_fp16)[name = tensor<string, []>("expand_dims_0_cast_fp16")];
|
15 |
+
tensor<int32, [1]> expand_dims_3 = const()[name = tensor<string, []>("expand_dims_3"), val = tensor<int32, [1]>([160])];
|
16 |
+
tensor<int32, [1]> expand_dims_4_axes_0 = const()[name = tensor<string, []>("expand_dims_4_axes_0"), val = tensor<int32, [1]>([1])];
|
17 |
+
tensor<fp16, [1, 1, 480400]> expand_dims_4_cast_fp16 = expand_dims(axes = expand_dims_4_axes_0, x = expand_dims_0_cast_fp16)[name = tensor<string, []>("expand_dims_4_cast_fp16")];
|
18 |
+
tensor<string, []> conv_0_pad_type_0 = const()[name = tensor<string, []>("conv_0_pad_type_0"), val = tensor<string, []>("valid")];
|
19 |
+
tensor<int32, [2]> conv_0_pad_0 = const()[name = tensor<string, []>("conv_0_pad_0"), val = tensor<int32, [2]>([0, 0])];
|
20 |
+
tensor<int32, [1]> conv_0_dilations_0 = const()[name = tensor<string, []>("conv_0_dilations_0"), val = tensor<int32, [1]>([1])];
|
21 |
+
tensor<int32, []> conv_0_groups_0 = const()[name = tensor<string, []>("conv_0_groups_0"), val = tensor<int32, []>(1)];
|
22 |
+
tensor<fp16, [201, 1, 400]> expand_dims_1_to_fp16 = const()[name = tensor<string, []>("expand_dims_1_to_fp16"), val = tensor<fp16, [201, 1, 400]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(64)))];
|
23 |
+
tensor<fp16, [1, 201, 3001]> conv_0_cast_fp16 = conv(dilations = conv_0_dilations_0, groups = conv_0_groups_0, pad = conv_0_pad_0, pad_type = conv_0_pad_type_0, strides = expand_dims_3, weight = expand_dims_1_to_fp16, x = expand_dims_4_cast_fp16)[name = tensor<string, []>("conv_0_cast_fp16")];
|
24 |
+
tensor<string, []> conv_1_pad_type_0 = const()[name = tensor<string, []>("conv_1_pad_type_0"), val = tensor<string, []>("valid")];
|
25 |
+
tensor<int32, [2]> conv_1_pad_0 = const()[name = tensor<string, []>("conv_1_pad_0"), val = tensor<int32, [2]>([0, 0])];
|
26 |
+
tensor<int32, [1]> conv_1_dilations_0 = const()[name = tensor<string, []>("conv_1_dilations_0"), val = tensor<int32, [1]>([1])];
|
27 |
+
tensor<int32, []> conv_1_groups_0 = const()[name = tensor<string, []>("conv_1_groups_0"), val = tensor<int32, []>(1)];
|
28 |
+
tensor<fp16, [201, 1, 400]> expand_dims_2_to_fp16 = const()[name = tensor<string, []>("expand_dims_2_to_fp16"), val = tensor<fp16, [201, 1, 400]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(160960)))];
|
29 |
+
tensor<fp16, [1, 201, 3001]> conv_1_cast_fp16 = conv(dilations = conv_1_dilations_0, groups = conv_1_groups_0, pad = conv_1_pad_0, pad_type = conv_1_pad_type_0, strides = expand_dims_3, weight = expand_dims_2_to_fp16, x = expand_dims_4_cast_fp16)[name = tensor<string, []>("conv_1_cast_fp16")];
|
30 |
+
tensor<int32, [1]> squeeze_0_axes_0 = const()[name = tensor<string, []>("squeeze_0_axes_0"), val = tensor<int32, [1]>([0])];
|
31 |
+
tensor<fp16, [201, 3001]> squeeze_0_cast_fp16 = squeeze(axes = squeeze_0_axes_0, x = conv_0_cast_fp16)[name = tensor<string, []>("squeeze_0_cast_fp16")];
|
32 |
+
tensor<int32, [1]> squeeze_1_axes_0 = const()[name = tensor<string, []>("squeeze_1_axes_0"), val = tensor<int32, [1]>([0])];
|
33 |
+
tensor<fp16, [201, 3001]> squeeze_1_cast_fp16 = squeeze(axes = squeeze_1_axes_0, x = conv_1_cast_fp16)[name = tensor<string, []>("squeeze_1_cast_fp16")];
|
34 |
+
tensor<fp16, [201, 3001]> square_0_cast_fp16 = square(x = squeeze_0_cast_fp16)[name = tensor<string, []>("square_0_cast_fp16")];
|
35 |
+
tensor<fp16, [201, 3001]> square_1_cast_fp16 = square(x = squeeze_1_cast_fp16)[name = tensor<string, []>("square_1_cast_fp16")];
|
36 |
+
tensor<fp16, [201, 3001]> add_1_cast_fp16 = add(x = square_0_cast_fp16, y = square_1_cast_fp16)[name = tensor<string, []>("add_1_cast_fp16")];
|
37 |
+
tensor<fp16, [201, 3001]> magnitudes_1_cast_fp16 = identity(x = add_1_cast_fp16)[name = tensor<string, []>("magnitudes_1_cast_fp16")];
|
38 |
+
tensor<int32, [2]> magnitudes_begin_0 = const()[name = tensor<string, []>("magnitudes_begin_0"), val = tensor<int32, [2]>([0, 0])];
|
39 |
+
tensor<int32, [2]> magnitudes_end_0 = const()[name = tensor<string, []>("magnitudes_end_0"), val = tensor<int32, [2]>([201, 3000])];
|
40 |
+
tensor<bool, [2]> magnitudes_end_mask_0 = const()[name = tensor<string, []>("magnitudes_end_mask_0"), val = tensor<bool, [2]>([true, false])];
|
41 |
+
tensor<fp16, [201, 3000]> magnitudes_cast_fp16 = slice_by_index(begin = magnitudes_begin_0, end = magnitudes_end_0, end_mask = magnitudes_end_mask_0, x = magnitudes_1_cast_fp16)[name = tensor<string, []>("magnitudes_cast_fp16")];
|
42 |
+
tensor<bool, []> mel_spec_1_transpose_x_0 = const()[name = tensor<string, []>("mel_spec_1_transpose_x_0"), val = tensor<bool, []>(false)];
|
43 |
+
tensor<bool, []> mel_spec_1_transpose_y_0 = const()[name = tensor<string, []>("mel_spec_1_transpose_y_0"), val = tensor<bool, []>(false)];
|
44 |
+
tensor<fp16, [128, 201]> mel_filters_to_fp16 = const()[name = tensor<string, []>("mel_filters_to_fp16"), val = tensor<fp16, [128, 201]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(321856)))];
|
45 |
+
tensor<fp16, [128, 3000]> mel_spec_1_cast_fp16 = matmul(transpose_x = mel_spec_1_transpose_x_0, transpose_y = mel_spec_1_transpose_y_0, x = mel_filters_to_fp16, y = magnitudes_cast_fp16)[name = tensor<string, []>("mel_spec_1_cast_fp16")];
|
46 |
+
tensor<fp16, []> var_41_to_fp16 = const()[name = tensor<string, []>("op_41_to_fp16"), val = tensor<fp16, []>(0x1p-24)];
|
47 |
+
tensor<fp16, [128, 3000]> mel_spec_cast_fp16 = add(x = mel_spec_1_cast_fp16, y = var_41_to_fp16)[name = tensor<string, []>("mel_spec_cast_fp16")];
|
48 |
+
tensor<fp16, []> log_0_epsilon_0_to_fp16 = const()[name = tensor<string, []>("log_0_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x0p+0)];
|
49 |
+
tensor<fp16, [128, 3000]> log_0_cast_fp16 = log(epsilon = log_0_epsilon_0_to_fp16, x = mel_spec_cast_fp16)[name = tensor<string, []>("log_0_cast_fp16")];
|
50 |
+
tensor<fp16, []> mul_0_y_0_to_fp16 = const()[name = tensor<string, []>("mul_0_y_0_to_fp16"), val = tensor<fp16, []>(0x1.bccp-2)];
|
51 |
+
tensor<fp16, [128, 3000]> mul_0_cast_fp16 = mul(x = log_0_cast_fp16, y = mul_0_y_0_to_fp16)[name = tensor<string, []>("mul_0_cast_fp16")];
|
52 |
+
tensor<bool, []> var_44_keep_dims_0 = const()[name = tensor<string, []>("op_44_keep_dims_0"), val = tensor<bool, []>(false)];
|
53 |
+
tensor<fp16, []> var_44_cast_fp16 = reduce_max(keep_dims = var_44_keep_dims_0, x = mul_0_cast_fp16)[name = tensor<string, []>("op_44_cast_fp16")];
|
54 |
+
tensor<fp16, []> var_46_to_fp16 = const()[name = tensor<string, []>("op_46_to_fp16"), val = tensor<fp16, []>(0x1p+3)];
|
55 |
+
tensor<fp16, []> var_47_cast_fp16 = sub(x = var_44_cast_fp16, y = var_46_to_fp16)[name = tensor<string, []>("op_47_cast_fp16")];
|
56 |
+
tensor<fp16, [128, 3000]> log_spec_3_cast_fp16 = maximum(x = mul_0_cast_fp16, y = var_47_cast_fp16)[name = tensor<string, []>("log_spec_3_cast_fp16")];
|
57 |
+
tensor<fp16, []> var_50_to_fp16 = const()[name = tensor<string, []>("op_50_to_fp16"), val = tensor<fp16, []>(0x1p+2)];
|
58 |
+
tensor<fp16, [128, 3000]> var_51_cast_fp16 = add(x = log_spec_3_cast_fp16, y = var_50_to_fp16)[name = tensor<string, []>("op_51_cast_fp16")];
|
59 |
+
tensor<fp16, []> _inversed_log_spec_y_0_to_fp16 = const()[name = tensor<string, []>("_inversed_log_spec_y_0_to_fp16"), val = tensor<fp16, []>(0x1p-2)];
|
60 |
+
tensor<fp16, [128, 3000]> _inversed_log_spec_cast_fp16 = mul(x = var_51_cast_fp16, y = _inversed_log_spec_y_0_to_fp16)[name = tensor<string, []>("_inversed_log_spec_cast_fp16")];
|
61 |
+
tensor<int32, [1]> var_55_axes_0 = const()[name = tensor<string, []>("op_55_axes_0"), val = tensor<int32, [1]>([0])];
|
62 |
+
tensor<fp16, [1, 128, 3000]> var_55_cast_fp16 = expand_dims(axes = var_55_axes_0, x = _inversed_log_spec_cast_fp16)[name = tensor<string, []>("op_55_cast_fp16")];
|
63 |
+
tensor<int32, [1]> var_62_axes_0 = const()[name = tensor<string, []>("op_62_axes_0"), val = tensor<int32, [1]>([2])];
|
64 |
+
tensor<fp16, [1, 128, 1, 3000]> melspectrogram_features = expand_dims(axes = var_62_axes_0, x = var_55_cast_fp16)[name = tensor<string, []>("op_62_cast_fp16")];
|
65 |
+
} -> (melspectrogram_features);
|
66 |
+
}
|
MelSpectrogram.mlmodelc/weights/weight.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9706424b44b19bfd91cf3a6da690c1098e53b3cf0c92a3d82f98f1dd6ce22b2e
|
3 |
+
size 373376
|
TextDecoder.mlmodelc/analytics/coremldata.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b5e92ccee25a77ac33ac33116cd2c8f4d96ea4b255da44251858b11de4ac7726
|
3 |
+
size 243
|
TextDecoder.mlmodelc/coremldata.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fa29817740999146de3e524f4c1c6ff73abeaeb094eb0823bb98b953fe69ea51
|
3 |
+
size 637
|
TextDecoder.mlmodelc/metadata.json
ADDED
@@ -0,0 +1,165 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"metadataOutputVersion" : "3.0",
|
4 |
+
"storagePrecision" : "Float16",
|
5 |
+
"outputSchema" : [
|
6 |
+
{
|
7 |
+
"hasShapeFlexibility" : "0",
|
8 |
+
"isOptional" : "0",
|
9 |
+
"dataType" : "Float16",
|
10 |
+
"formattedType" : "MultiArray (Float16 1 × 1 × 51866)",
|
11 |
+
"shortDescription" : "",
|
12 |
+
"shape" : "[1, 1, 51866]",
|
13 |
+
"name" : "logits",
|
14 |
+
"type" : "MultiArray"
|
15 |
+
},
|
16 |
+
{
|
17 |
+
"hasShapeFlexibility" : "0",
|
18 |
+
"isOptional" : "0",
|
19 |
+
"dataType" : "Float16",
|
20 |
+
"formattedType" : "MultiArray (Float16 1 × 40960 × 1 × 1)",
|
21 |
+
"shortDescription" : "",
|
22 |
+
"shape" : "[1, 40960, 1, 1]",
|
23 |
+
"name" : "key_cache_updates",
|
24 |
+
"type" : "MultiArray"
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"hasShapeFlexibility" : "0",
|
28 |
+
"isOptional" : "0",
|
29 |
+
"dataType" : "Float16",
|
30 |
+
"formattedType" : "MultiArray (Float16 1 × 40960 × 1 × 1)",
|
31 |
+
"shortDescription" : "",
|
32 |
+
"shape" : "[1, 40960, 1, 1]",
|
33 |
+
"name" : "value_cache_updates",
|
34 |
+
"type" : "MultiArray"
|
35 |
+
},
|
36 |
+
{
|
37 |
+
"hasShapeFlexibility" : "0",
|
38 |
+
"isOptional" : "0",
|
39 |
+
"dataType" : "Float16",
|
40 |
+
"formattedType" : "MultiArray (Float16 1 × 1500)",
|
41 |
+
"shortDescription" : "",
|
42 |
+
"shape" : "[1, 1500]",
|
43 |
+
"name" : "alignment_heads_weights",
|
44 |
+
"type" : "MultiArray"
|
45 |
+
}
|
46 |
+
],
|
47 |
+
"modelParameters" : [
|
48 |
+
|
49 |
+
],
|
50 |
+
"specificationVersion" : 7,
|
51 |
+
"mlProgramOperationTypeHistogram" : {
|
52 |
+
"Split" : 2,
|
53 |
+
"Concat" : 3,
|
54 |
+
"Ios16.rsqrt" : 97,
|
55 |
+
"Ios16.mul" : 386,
|
56 |
+
"Squeeze" : 1,
|
57 |
+
"SliceByIndex" : 20,
|
58 |
+
"Ios16.sub" : 98,
|
59 |
+
"Transpose" : 1,
|
60 |
+
"Ios16.conv" : 320,
|
61 |
+
"Ios16.add" : 290,
|
62 |
+
"Ios16.linear" : 1,
|
63 |
+
"Ios16.matmul" : 128,
|
64 |
+
"Ios16.gelu" : 32,
|
65 |
+
"Ios16.reduceMean" : 195,
|
66 |
+
"ExpandDims" : 6,
|
67 |
+
"Ios16.batchNorm" : 97,
|
68 |
+
"Ios16.gather" : 2,
|
69 |
+
"Ios16.reshape" : 256,
|
70 |
+
"Ios16.softmax" : 64
|
71 |
+
},
|
72 |
+
"computePrecision" : "Mixed (Float16, Int32)",
|
73 |
+
"isUpdatable" : "0",
|
74 |
+
"availability" : {
|
75 |
+
"macOS" : "13.0",
|
76 |
+
"tvOS" : "16.0",
|
77 |
+
"visionOS" : "1.0",
|
78 |
+
"watchOS" : "9.0",
|
79 |
+
"iOS" : "16.0",
|
80 |
+
"macCatalyst" : "16.0"
|
81 |
+
},
|
82 |
+
"modelType" : {
|
83 |
+
"name" : "MLModelType_mlProgram"
|
84 |
+
},
|
85 |
+
"userDefinedMetadata" : {
|
86 |
+
"com.github.apple.coremltools.source_dialect" : "TorchScript",
|
87 |
+
"com.github.apple.coremltools.source" : "torch==2.2.2",
|
88 |
+
"com.github.apple.coremltools.version" : "7.1"
|
89 |
+
},
|
90 |
+
"inputSchema" : [
|
91 |
+
{
|
92 |
+
"hasShapeFlexibility" : "0",
|
93 |
+
"isOptional" : "0",
|
94 |
+
"dataType" : "Int32",
|
95 |
+
"formattedType" : "MultiArray (Int32 1)",
|
96 |
+
"shortDescription" : "",
|
97 |
+
"shape" : "[1]",
|
98 |
+
"name" : "input_ids",
|
99 |
+
"type" : "MultiArray"
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"hasShapeFlexibility" : "0",
|
103 |
+
"isOptional" : "0",
|
104 |
+
"dataType" : "Int32",
|
105 |
+
"formattedType" : "MultiArray (Int32 1)",
|
106 |
+
"shortDescription" : "",
|
107 |
+
"shape" : "[1]",
|
108 |
+
"name" : "cache_length",
|
109 |
+
"type" : "MultiArray"
|
110 |
+
},
|
111 |
+
{
|
112 |
+
"hasShapeFlexibility" : "0",
|
113 |
+
"isOptional" : "0",
|
114 |
+
"dataType" : "Float16",
|
115 |
+
"formattedType" : "MultiArray (Float16 1 × 40960 × 1 × 448)",
|
116 |
+
"shortDescription" : "",
|
117 |
+
"shape" : "[1, 40960, 1, 448]",
|
118 |
+
"name" : "key_cache",
|
119 |
+
"type" : "MultiArray"
|
120 |
+
},
|
121 |
+
{
|
122 |
+
"hasShapeFlexibility" : "0",
|
123 |
+
"isOptional" : "0",
|
124 |
+
"dataType" : "Float16",
|
125 |
+
"formattedType" : "MultiArray (Float16 1 × 40960 × 1 × 448)",
|
126 |
+
"shortDescription" : "",
|
127 |
+
"shape" : "[1, 40960, 1, 448]",
|
128 |
+
"name" : "value_cache",
|
129 |
+
"type" : "MultiArray"
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"hasShapeFlexibility" : "0",
|
133 |
+
"isOptional" : "0",
|
134 |
+
"dataType" : "Float16",
|
135 |
+
"formattedType" : "MultiArray (Float16 1 × 448)",
|
136 |
+
"shortDescription" : "",
|
137 |
+
"shape" : "[1, 448]",
|
138 |
+
"name" : "kv_cache_update_mask",
|
139 |
+
"type" : "MultiArray"
|
140 |
+
},
|
141 |
+
{
|
142 |
+
"hasShapeFlexibility" : "0",
|
143 |
+
"isOptional" : "0",
|
144 |
+
"dataType" : "Float16",
|
145 |
+
"formattedType" : "MultiArray (Float16 1 × 1280 × 1 × 1500)",
|
146 |
+
"shortDescription" : "",
|
147 |
+
"shape" : "[1, 1280, 1, 1500]",
|
148 |
+
"name" : "encoder_output_embeds",
|
149 |
+
"type" : "MultiArray"
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"hasShapeFlexibility" : "0",
|
153 |
+
"isOptional" : "0",
|
154 |
+
"dataType" : "Float16",
|
155 |
+
"formattedType" : "MultiArray (Float16 1 × 448)",
|
156 |
+
"shortDescription" : "",
|
157 |
+
"shape" : "[1, 448]",
|
158 |
+
"name" : "decoder_key_padding_mask",
|
159 |
+
"type" : "MultiArray"
|
160 |
+
}
|
161 |
+
],
|
162 |
+
"generatedClassName" : "TextDecoder",
|
163 |
+
"method" : "predict"
|
164 |
+
}
|
165 |
+
]
|
TextDecoder.mlmodelc/model.mil
ADDED
The diff for this file is too large to render.
See raw diff
|
|
TextDecoder.mlmodelc/weights/weight.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:825aa30e6c38980621f457f3df5a0ba463bcd80c951bc4ec344143ff1c4fa20c
|
3 |
+
size 1813201716
|