program(1.0) [buildInfo = dict, tensor>({{"coremlc-component-MIL", "3304.5.2"}, {"coremlc-version", "3304.6.2"}, {"coremltools-component-torch", "2.2.2"}, {"coremltools-source-dialect", "TorchScript"}, {"coremltools-version", "7.1"}})] { func main(tensor audio) { tensor var_10 = const()[name = tensor("op_10"), val = tensor([1, 1, 480000])]; tensor input_1_cast_fp16 = reshape(shape = var_10, x = audio)[name = tensor("input_1_cast_fp16")]; tensor input_3_pad_0 = const()[name = tensor("input_3_pad_0"), val = tensor([0, 0, 0, 0, 200, 200])]; tensor input_3_mode_0 = const()[name = tensor("input_3_mode_0"), val = tensor("reflect")]; tensor input_3_constant_val_0_to_fp16 = const()[name = tensor("input_3_constant_val_0_to_fp16"), val = tensor(0x0p+0)]; tensor input_3_cast_fp16 = pad(constant_val = input_3_constant_val_0_to_fp16, mode = input_3_mode_0, pad = input_3_pad_0, x = input_1_cast_fp16)[name = tensor("input_3_cast_fp16")]; tensor var_22 = const()[name = tensor("op_22"), val = tensor([480400])]; tensor input_cast_fp16 = reshape(shape = var_22, x = input_3_cast_fp16)[name = tensor("input_cast_fp16")]; tensor expand_dims_0_axes_0 = const()[name = tensor("expand_dims_0_axes_0"), val = tensor([0])]; tensor expand_dims_0_cast_fp16 = expand_dims(axes = expand_dims_0_axes_0, x = input_cast_fp16)[name = tensor("expand_dims_0_cast_fp16")]; tensor expand_dims_3 = const()[name = tensor("expand_dims_3"), val = tensor([160])]; tensor expand_dims_4_axes_0 = const()[name = tensor("expand_dims_4_axes_0"), val = tensor([1])]; tensor expand_dims_4_cast_fp16 = expand_dims(axes = expand_dims_4_axes_0, x = expand_dims_0_cast_fp16)[name = tensor("expand_dims_4_cast_fp16")]; tensor conv_0_pad_type_0 = const()[name = tensor("conv_0_pad_type_0"), val = tensor("valid")]; tensor conv_0_pad_0 = const()[name = tensor("conv_0_pad_0"), val = tensor([0, 0])]; tensor conv_0_dilations_0 = const()[name = tensor("conv_0_dilations_0"), val = tensor([1])]; tensor conv_0_groups_0 = const()[name = tensor("conv_0_groups_0"), val = tensor(1)]; tensor expand_dims_1_to_fp16 = const()[name = tensor("expand_dims_1_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(64)))]; tensor conv_0_cast_fp16 = conv(dilations = conv_0_dilations_0, groups = conv_0_groups_0, pad = conv_0_pad_0, pad_type = conv_0_pad_type_0, strides = expand_dims_3, weight = expand_dims_1_to_fp16, x = expand_dims_4_cast_fp16)[name = tensor("conv_0_cast_fp16")]; tensor conv_1_pad_type_0 = const()[name = tensor("conv_1_pad_type_0"), val = tensor("valid")]; tensor conv_1_pad_0 = const()[name = tensor("conv_1_pad_0"), val = tensor([0, 0])]; tensor conv_1_dilations_0 = const()[name = tensor("conv_1_dilations_0"), val = tensor([1])]; tensor conv_1_groups_0 = const()[name = tensor("conv_1_groups_0"), val = tensor(1)]; tensor expand_dims_2_to_fp16 = const()[name = tensor("expand_dims_2_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(160960)))]; tensor conv_1_cast_fp16 = conv(dilations = conv_1_dilations_0, groups = conv_1_groups_0, pad = conv_1_pad_0, pad_type = conv_1_pad_type_0, strides = expand_dims_3, weight = expand_dims_2_to_fp16, x = expand_dims_4_cast_fp16)[name = tensor("conv_1_cast_fp16")]; tensor squeeze_0_axes_0 = const()[name = tensor("squeeze_0_axes_0"), val = tensor([0])]; tensor squeeze_0_cast_fp16 = squeeze(axes = squeeze_0_axes_0, x = conv_0_cast_fp16)[name = tensor("squeeze_0_cast_fp16")]; tensor squeeze_1_axes_0 = const()[name = tensor("squeeze_1_axes_0"), val = tensor([0])]; tensor squeeze_1_cast_fp16 = squeeze(axes = squeeze_1_axes_0, x = conv_1_cast_fp16)[name = tensor("squeeze_1_cast_fp16")]; tensor square_0_cast_fp16 = square(x = squeeze_0_cast_fp16)[name = tensor("square_0_cast_fp16")]; tensor square_1_cast_fp16 = square(x = squeeze_1_cast_fp16)[name = tensor("square_1_cast_fp16")]; tensor add_1_cast_fp16 = add(x = square_0_cast_fp16, y = square_1_cast_fp16)[name = tensor("add_1_cast_fp16")]; tensor magnitudes_1_cast_fp16 = identity(x = add_1_cast_fp16)[name = tensor("magnitudes_1_cast_fp16")]; tensor magnitudes_begin_0 = const()[name = tensor("magnitudes_begin_0"), val = tensor([0, 0])]; tensor magnitudes_end_0 = const()[name = tensor("magnitudes_end_0"), val = tensor([201, 3000])]; tensor magnitudes_end_mask_0 = const()[name = tensor("magnitudes_end_mask_0"), val = tensor([true, false])]; tensor magnitudes_cast_fp16 = slice_by_index(begin = magnitudes_begin_0, end = magnitudes_end_0, end_mask = magnitudes_end_mask_0, x = magnitudes_1_cast_fp16)[name = tensor("magnitudes_cast_fp16")]; tensor mel_spec_1_transpose_x_0 = const()[name = tensor("mel_spec_1_transpose_x_0"), val = tensor(false)]; tensor mel_spec_1_transpose_y_0 = const()[name = tensor("mel_spec_1_transpose_y_0"), val = tensor(false)]; tensor mel_filters_to_fp16 = const()[name = tensor("mel_filters_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(321856)))]; tensor mel_spec_1_cast_fp16 = matmul(transpose_x = mel_spec_1_transpose_x_0, transpose_y = mel_spec_1_transpose_y_0, x = mel_filters_to_fp16, y = magnitudes_cast_fp16)[name = tensor("mel_spec_1_cast_fp16")]; tensor var_41_to_fp16 = const()[name = tensor("op_41_to_fp16"), val = tensor(0x1p-24)]; tensor mel_spec_cast_fp16 = add(x = mel_spec_1_cast_fp16, y = var_41_to_fp16)[name = tensor("mel_spec_cast_fp16")]; tensor log_0_epsilon_0_to_fp16 = const()[name = tensor("log_0_epsilon_0_to_fp16"), val = tensor(0x0p+0)]; tensor log_0_cast_fp16 = log(epsilon = log_0_epsilon_0_to_fp16, x = mel_spec_cast_fp16)[name = tensor("log_0_cast_fp16")]; tensor mul_0_y_0_to_fp16 = const()[name = tensor("mul_0_y_0_to_fp16"), val = tensor(0x1.bccp-2)]; tensor mul_0_cast_fp16 = mul(x = log_0_cast_fp16, y = mul_0_y_0_to_fp16)[name = tensor("mul_0_cast_fp16")]; tensor var_44_keep_dims_0 = const()[name = tensor("op_44_keep_dims_0"), val = tensor(false)]; tensor var_44_cast_fp16 = reduce_max(keep_dims = var_44_keep_dims_0, x = mul_0_cast_fp16)[name = tensor("op_44_cast_fp16")]; tensor var_46_to_fp16 = const()[name = tensor("op_46_to_fp16"), val = tensor(0x1p+3)]; tensor var_47_cast_fp16 = sub(x = var_44_cast_fp16, y = var_46_to_fp16)[name = tensor("op_47_cast_fp16")]; tensor log_spec_3_cast_fp16 = maximum(x = mul_0_cast_fp16, y = var_47_cast_fp16)[name = tensor("log_spec_3_cast_fp16")]; tensor var_50_to_fp16 = const()[name = tensor("op_50_to_fp16"), val = tensor(0x1p+2)]; tensor var_51_cast_fp16 = add(x = log_spec_3_cast_fp16, y = var_50_to_fp16)[name = tensor("op_51_cast_fp16")]; tensor _inversed_log_spec_y_0_to_fp16 = const()[name = tensor("_inversed_log_spec_y_0_to_fp16"), val = tensor(0x1p-2)]; tensor _inversed_log_spec_cast_fp16 = mul(x = var_51_cast_fp16, y = _inversed_log_spec_y_0_to_fp16)[name = tensor("_inversed_log_spec_cast_fp16")]; tensor var_55_axes_0 = const()[name = tensor("op_55_axes_0"), val = tensor([0])]; tensor var_55_cast_fp16 = expand_dims(axes = var_55_axes_0, x = _inversed_log_spec_cast_fp16)[name = tensor("op_55_cast_fp16")]; tensor var_62_axes_0 = const()[name = tensor("op_62_axes_0"), val = tensor([2])]; tensor melspectrogram_features = expand_dims(axes = var_62_axes_0, x = var_55_cast_fp16)[name = tensor("op_62_cast_fp16")]; } -> (melspectrogram_features); }