BioMike commited on
Commit
bf67ca3
1 Parent(s): 312db1f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +160 -167
README.md CHANGED
@@ -9,190 +9,183 @@ tags:
9
  ---
10
  # Model Card for Model ID
11
 
12
- <!-- Provide a quick summary of what the model is/does. -->
13
-
14
- This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1).
15
-
16
  ## Model Details
17
 
18
- ### Model Description
19
-
20
- <!-- Provide a longer summary of what this model is. -->
21
-
22
 
23
 
24
- - **Developed by:** [More Information Needed]
25
- - **Funded by [optional]:** [More Information Needed]
26
- - **Shared by [optional]:** [More Information Needed]
27
- - **Model type:** [More Information Needed]
28
- - **Language(s) (NLP):** [More Information Needed]
29
- - **License:** [More Information Needed]
30
- - **Finetuned from model [optional]:** [More Information Needed]
31
-
32
- ### Model Sources [optional]
33
 
34
  <!-- Provide the basic links for the model. -->
35
-
36
- - **Repository:** [More Information Needed]
37
- - **Paper [optional]:** [More Information Needed]
38
- - **Demo [optional]:** [More Information Needed]
39
-
40
- ## Uses
41
-
42
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
43
-
44
- ### Direct Use
45
-
46
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
47
-
48
- [More Information Needed]
49
-
50
- ### Downstream Use [optional]
51
-
52
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
53
-
54
- [More Information Needed]
55
-
56
- ### Out-of-Scope Use
57
-
58
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
59
-
60
- [More Information Needed]
61
-
62
- ## Bias, Risks, and Limitations
63
-
64
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
65
-
66
- [More Information Needed]
67
-
68
- ### Recommendations
69
-
70
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
71
-
72
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
73
 
74
  ## How to Get Started with the Model
75
 
76
- Use the code below to get started with the model.
77
-
78
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79
 
80
  ## Training Details
81
 
82
  ### Training Data
83
 
84
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
85
-
86
- [More Information Needed]
87
 
88
  ### Training Procedure
89
 
90
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
91
-
92
- #### Preprocessing [optional]
93
-
94
- [More Information Needed]
95
-
96
-
97
- #### Training Hyperparameters
98
-
99
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
100
-
101
- #### Speeds, Sizes, Times [optional]
102
-
103
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
104
-
105
- [More Information Needed]
106
-
107
- ## Evaluation
108
-
109
- <!-- This section describes the evaluation protocols and provides the results. -->
110
-
111
- ### Testing Data, Factors & Metrics
112
-
113
- #### Testing Data
114
-
115
- <!-- This should link to a Dataset Card if possible. -->
116
-
117
- [More Information Needed]
118
-
119
- #### Factors
120
-
121
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
122
-
123
- [More Information Needed]
124
-
125
- #### Metrics
126
-
127
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
128
-
129
- [More Information Needed]
130
-
131
- ### Results
132
-
133
- [More Information Needed]
134
-
135
- #### Summary
136
-
137
-
138
-
139
- ## Model Examination [optional]
140
-
141
- <!-- Relevant interpretability work for the model goes here -->
142
-
143
- [More Information Needed]
144
-
145
- ## Environmental Impact
146
-
147
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
148
-
149
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
150
-
151
- - **Hardware Type:** [More Information Needed]
152
- - **Hours used:** [More Information Needed]
153
- - **Cloud Provider:** [More Information Needed]
154
- - **Compute Region:** [More Information Needed]
155
- - **Carbon Emitted:** [More Information Needed]
156
-
157
- ## Technical Specifications [optional]
158
-
159
- ### Model Architecture and Objective
160
-
161
- [More Information Needed]
162
-
163
- ### Compute Infrastructure
164
-
165
- [More Information Needed]
166
-
167
- #### Hardware
168
-
169
- [More Information Needed]
170
-
171
- #### Software
172
-
173
- [More Information Needed]
174
-
175
- ## Citation [optional]
176
-
177
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
178
-
179
- **BibTeX:**
180
-
181
- [More Information Needed]
182
-
183
- **APA:**
184
-
185
- [More Information Needed]
186
-
187
- ## Glossary [optional]
188
-
189
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
190
-
191
- [More Information Needed]
192
-
193
- ## More Information [optional]
194
-
195
- [More Information Needed]
196
 
197
  ## Model Card Authors [optional]
198
 
 
9
  ---
10
  # Model Card for Model ID
11
 
 
 
 
 
12
  ## Model Details
13
 
14
+ The model is a VAE trained for encoding classical portraits in 128*128 resolution into a d=256 latent vector and decoding into original images.
 
 
 
15
 
16
 
17
+ ## Model Sources [optional]
 
 
 
 
 
 
 
 
18
 
19
  <!-- Provide the basic links for the model. -->
20
+ - **Demo [optional]:** [https://huggingface.co/spaces/BioMike/ClassicalPortraitsVAE]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21
 
22
  ## How to Get Started with the Model
23
 
24
+ ```python
25
+ import json
26
+ import torch
27
+ import torch.nn as nn
28
+ import os
29
+ from pathlib import Path
30
+ from typing import Optional, Union, Dict
31
+ from huggingface_hub import snapshot_download
32
+ import warnings
33
+
34
+ class ConvVAE(nn.Module):
35
+ def __init__(self, latent_size):
36
+ super(ConvVAE, self).__init__()
37
+
38
+ # Encoder
39
+ self.encoder = nn.Sequential(
40
+ nn.Conv2d(3, 64, 3, stride=2, padding=1), # (batch, 64, 64, 64)
41
+ nn.BatchNorm2d(64),
42
+ nn.ReLU(),
43
+ nn.Conv2d(64, 128, 3, stride=2, padding=1), # (batch, 128, 32, 32)
44
+ nn.BatchNorm2d(128),
45
+ nn.ReLU(),
46
+ nn.Conv2d(128, 256, 3, stride=2, padding=1), # (batch, 256, 16, 16)
47
+ nn.BatchNorm2d(256),
48
+ nn.ReLU(),
49
+ nn.Conv2d(256, 512, 3, stride=2, padding=1), # (batch, 512, 8, 8)
50
+ nn.BatchNorm2d(512),
51
+ nn.ReLU()
52
+ )
53
+
54
+ self.fc_mu = nn.Linear(512 * 8 * 8, latent_size)
55
+ self.fc_logvar = nn.Linear(512 * 8 * 8, latent_size)
56
+
57
+ self.fc2 = nn.Linear(latent_size, 512 * 8 * 8)
58
+
59
+ self.decoder = nn.Sequential(
60
+ nn.ConvTranspose2d(512, 256, 4, stride=2, padding=1), # (batch, 256, 16, 16)
61
+ nn.BatchNorm2d(256),
62
+ nn.ReLU(),
63
+ nn.ConvTranspose2d(256, 128, 4, stride=2, padding=1), # (batch, 128, 32, 32)
64
+ nn.BatchNorm2d(128),
65
+ nn.ReLU(),
66
+ nn.ConvTranspose2d(128, 64, 4, stride=2, padding=1), # (batch, 64, 64, 64)
67
+ nn.BatchNorm2d(64),
68
+ nn.ReLU(),
69
+ nn.ConvTranspose2d(64, 3, 4, stride=2, padding=1), # (batch, 3, 128, 128)
70
+ nn.Tanh()
71
+ )
72
+
73
+ def forward(self, x):
74
+ mu, logvar = self.encode(x)
75
+ z = self.reparameterize(mu, logvar)
76
+ decoded = self.decode(z)
77
+ return decoded, mu, logvar
78
+
79
+ def encode(self, x):
80
+ x = self.encoder(x)
81
+ x = x.view(x.size(0), -1)
82
+ mu = self.fc_mu(x)
83
+ logvar = self.fc_logvar(x)
84
+ return mu, logvar
85
+
86
+ def reparameterize(self, mu, logvar):
87
+ std = torch.exp(0.5 * logvar)
88
+ eps = torch.randn_like(std)
89
+ return mu + eps * std
90
+
91
+ def decode(self, z):
92
+ x = self.fc2(z)
93
+ x = x.view(-1, 512, 8, 8)
94
+ decoded = self.decoder(x)
95
+ return decoded
96
+
97
+ @classmethod
98
+ def from_pretrained(
99
+ cls,
100
+ model_id: str,
101
+ revision: Optional[str] = None,
102
+ cache_dir: Optional[Union[str, Path]] = None,
103
+ force_download: bool = False,
104
+ proxies: Optional[Dict] = None,
105
+ resume_download: bool = False,
106
+ local_files_only: bool = False,
107
+ token: Union[str, bool, None] = None,
108
+ map_location: str = "cpu",
109
+ strict: bool = False,
110
+ **model_kwargs,
111
+ ):
112
+ """
113
+ Load a pretrained model from a given model ID.
114
+ Args:
115
+ model_id (str): Identifier of the model to load.
116
+ revision (Optional[str]): Specific model revision to use.
117
+ cache_dir (Optional[Union[str, Path]]): Directory to store downloaded models.
118
+ force_download (bool): Force re-download even if the model exists.
119
+ proxies (Optional[Dict]): Proxy configuration for downloads.
120
+ resume_download (bool): Resume interrupted downloads.
121
+ local_files_only (bool): Use only local files, don't download.
122
+ token (Union[str, bool, None]): Token for API authentication.
123
+ map_location (str): Device to map model to. Defaults to "cpu".
124
+ strict (bool): Enforce strict state_dict loading.
125
+ **model_kwargs: Additional keyword arguments for model initialization.
126
+ Returns:
127
+ An instance of the model loaded from the pretrained weights.
128
+ """
129
+ model_dir = Path(model_id)
130
+ if not model_dir.exists():
131
+ model_dir = Path(
132
+ snapshot_download(
133
+ repo_id=model_id,
134
+ revision=revision,
135
+ cache_dir=cache_dir,
136
+ force_download=force_download,
137
+ proxies=proxies,
138
+ resume_download=resume_download,
139
+ token=token,
140
+ local_files_only=local_files_only,
141
+ )
142
+ )
143
+
144
+ config_file = model_dir / "config.json"
145
+ with open(config_file, 'r') as f:
146
+ config = json.load(f)
147
+
148
+ latent_size = config.get('latent_size')
149
+ if latent_size is None:
150
+ raise ValueError("The configuration file is missing the 'latent_size' key.")
151
+
152
+ model = cls(latent_size, **model_kwargs)
153
+
154
+ model_file = model_dir / "model_conv_vae_256_epoch_304.pth"
155
+ if not model_file.exists():
156
+ raise FileNotFoundError(f"The model checkpoint '{model_file}' does not exist.")
157
+
158
+ state_dict = torch.load(model_file, map_location=map_location)
159
+
160
+ new_state_dict = {}
161
+ for k, v in state_dict.items():
162
+ if k.startswith('_orig_mod.'):
163
+ new_state_dict[k[len('_orig_mod.'):]] = v
164
+ else:
165
+ new_state_dict[k] = v
166
+
167
+ model.load_state_dict(new_state_dict, strict=strict)
168
+ model.to(map_location)
169
+
170
+ return model
171
+
172
+
173
+ model = ConvVAE.from_pretrained(
174
+ model_id="BioMike/classical_portrait_vae",
175
+ cache_dir="./model_cache",
176
+ map_location="cpu",
177
+ strict=True).eval()
178
+ ```
179
 
180
  ## Training Details
181
 
182
  ### Training Data
183
 
184
+ The model was trained on the [Portrait Dataset](https://www.kaggle.com/datasets/karnikakapoor/art-portraits)
 
 
185
 
186
  ### Training Procedure
187
 
188
+ The model was trained into two steps, in the first the model vgg16 was employed in the perceptual loss, to train our model to extract general features, and the model vggface2 was used to train VAE to decode faces accurately.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
189
 
190
  ## Model Card Authors [optional]
191